Switch to: References

Add citations

You must login to add citations.
  1. $\Pi _{1}^{0}$ Classes and Strong Degree Spectra of Relations.John Chisholm, Jennifer Chubb, Valentina S. Harizanov, Denis R. Hirschfeldt, Carl G. Jockusch, Timothy McNicholl & Sarah Pingrey - 2007 - Journal of Symbolic Logic 72 (3):1003 - 1018.
    We study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable $\Pi _{1}^{0}$ subsets of 2ω and Kolmogorov complexity play a major role in the proof.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Realizing Levels of the Hyperarithmetic Hierarchy as Degree Spectra of Relations on Computable Structures.Walker M. White & Denis R. Hirschfeldt - 2002 - Notre Dame Journal of Formal Logic 43 (1):51-64.
    We construct a class of relations on computable structures whose degree spectra form natural classes of degrees. Given any computable ordinal and reducibility r stronger than or equal to m-reducibility, we show how to construct a structure with an intrinsically invariant relation whose degree spectrum consists of all nontrivial r-degrees. We extend this construction to show that can be replaced by either or.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Spaces of orders and their Turing degree spectra.Malgorzata A. Dabkowska, Mieczyslaw K. Dabkowski, Valentina S. Harizanov & Amir A. Togha - 2010 - Annals of Pure and Applied Logic 161 (9):1134-1143.
    We investigate computability theoretic and topological properties of spaces of orders on computable orderable groups. A left order on a group G is a linear order of the domain of G, which is left-invariant under the group operation. Right orders and bi-orders are defined similarly. In particular, we study groups for which the spaces of left orders are homeomorphic to the Cantor set, and their Turing degree spectra contain certain upper cones of degrees. Our approach unifies and extends Sikora’s [28] (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Prime models of finite computable dimension.Pavel Semukhin - 2009 - Journal of Symbolic Logic 74 (1):336-348.
    We study the following open question in computable model theory: does there exist a structure of computable dimension two which is the prime model of its first-order theory? We construct an example of such a structure by coding a certain family of c.e. sets with exactly two one-to-one computable enumerations into a directed graph. We also show that there are examples of such structures in the classes of undirected graphs, partial orders, lattices, and integral domains.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite computable dimension and degrees of categoricity.Barbara F. Csima & Jonathan Stephenson - 2019 - Annals of Pure and Applied Logic 170 (1):58-94.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Degrees of relations on canonically ordered natural numbers and integers.Nikolay Bazhenov, Dariusz Kalociński & Michał Wrocławski - forthcoming - Archive for Mathematical Logic:1-33.
    We investigate the degree spectra of computable relations on canonically ordered natural numbers $$(\omega,<)$$ ( ω, < ) and integers $$(\zeta,<)$$ ( ζ, < ). As for $$(\omega,<)$$ ( ω, < ), we provide several criteria that fix the degree spectrum of a computable relation to all c.e. or to all $$\Delta _2$$ Δ 2 degrees; this includes the complete characterization of the degree spectra of so-called computable block functions that have only finitely many types of blocks. Compared to Bazhenov (...)
    Download  
     
    Export citation  
     
    Bookmark