Switch to: References

Add citations

You must login to add citations.
  1. On the isomorphism problem for some classes of computable algebraic structures.Valentina S. Harizanov, Steffen Lempp, Charles F. D. McCoy, Andrei S. Morozov & Reed Solomon - 2022 - Archive for Mathematical Logic 61 (5):813-825.
    We establish that the isomorphism problem for the classes of computable nilpotent rings, distributive lattices, nilpotent groups, and nilpotent semigroups is \-complete, which is as complicated as possible. The method we use is based on uniform effective interpretations of computable binary relations into computable structures from the corresponding algebraic classes.
    Download  
     
    Export citation  
     
    Bookmark  
  • A computably categorical structure whose expansion by a constant has infinite computable dimension.Denis Hirschfeldt, Bakhadyr Khoussainov & Richard Shore - 2003 - Journal of Symbolic Logic 68 (4):1199-1241.
    Cholak, Goncharov, Khoussainov, and Shore [1] showed that for each k > 0 there is a computably categorical structure whose expansion by a constant has computable dimension k. We show that the same is true with k replaced by ω. Our proof uses a version of Goncharov's method of left and right operations.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Finite computable dimension and degrees of categoricity.Barbara F. Csima & Jonathan Stephenson - 2019 - Annals of Pure and Applied Logic 170 (1):58-94.
    Download  
     
    Export citation  
     
    Bookmark   4 citations