Switch to: References

Add citations

You must login to add citations.
  1. Quantum and Classical Correlations in Quantum Measurement.Zhengjun Xi & Yongming Li - 2013 - Foundations of Physics 43 (3):285-293.
    We revisit quantum measurement when the apparatus is initially in a mixed state. We find that, in a particular restriction setup, the amount of entanglement between the system and the apparatus is given by the entropy increasing of the system under the measurement transformation. We show that the information gained is equal to the amount of entanglement under performing perfect measurement. Based on the perfect measurement, we give an upper bound of quantum discord.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Quantum Measurement Problem and Cluster Separability.P. Hájíček - 2011 - Foundations of Physics 41 (4):640-666.
    A modified Beltrametti-Cassinelli-Lahti model of the measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis is that registration apparatuses (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Changes of Separation Status During Registration and Scattering.P. Hájíček - 2012 - Foundations of Physics 42 (4):555-581.
    In our previous work, a new approach to the notorious problem of quantum measurement was proposed. Existing treatments of the problem were incorrect because they ignored the disturbance of measurement by identical particles and standard quantum mechanics had to be modified to obey the cluster separability principle. The key tool was the notion of separation status. Changes of separation status occur during preparations, registrations and scattering on macroscopic targets. Standard quantum mechanics does not provide any correct rules that would govern (...)
    Download  
     
    Export citation  
     
    Bookmark