Switch to: References

Add citations

You must login to add citations.
  1. Paths to Triviality.Tore Fjetland Øgaard - 2016 - Journal of Philosophical Logic 45 (3):237-276.
    This paper presents a range of new triviality proofs pertaining to naïve truth theory formulated in paraconsistent relevant logics. It is shown that excluded middle together with various permutation principles such as A → (B → C)⊩B → (A → C) trivialize naïve truth theory. The paper also provides some new triviality proofs which utilize the axioms ((A → B)∧ (B → C)) → (A → C) and (A → ¬A) → ¬A, the fusion connective and the Ackermann constant. An (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Distinguishing non-standard natural numbers in a set theory within Łukasiewicz logic.Shunsuke Yatabe - 2007 - Archive for Mathematical Logic 46 (3-4):281-287.
    In ${\mathbf{H}}$ , a set theory with the comprehension principle within Łukasiewicz infinite-valued predicate logic, we prove that a statement which can be interpreted as “there is an infinite descending sequence of initial segments of ω” is truth value 1 in any model of ${\mathbf{H}}$ , and we prove an analogy of Hájek’s theorem with a very simple procedure.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logical Consequence and the Paradoxes.Edwin Mares & Francesco Paoli - 2014 - Journal of Philosophical Logic 43 (2-3):439-469.
    We group the existing variants of the familiar set-theoretical and truth-theoretical paradoxes into two classes: connective paradoxes, which can in principle be ascribed to the presence of a contracting connective of some sort, and structural paradoxes, where at most the faulty use of a structural inference rule can possibly be blamed. We impute the former to an equivocation over the meaning of logical constants, and the latter to an equivocation over the notion of consequence. Both equivocation sources are tightly related, (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Mathematical fuzzy logics.Siegfried Gottwald - 2008 - Bulletin of Symbolic Logic 14 (2):210-239.
    The last decade has seen an enormous development in infinite-valued systems and in particular in such systems which have become known as mathematical fuzzy logics. The paper discusses the mathematical background for the interest in such systems of mathematical fuzzy logics, as well as the most important ones of them. It concentrates on the propositional cases, and mentions the first-order systems more superficially. The main ideas, however, become clear already in this restricted setting.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches.Siegfried Gottwald - 2006 - Studia Logica 82 (2):211-244.
    For classical sets one has with the cumulative hierarchy of sets, with axiomatizations like the system ZF, and with the category SET of all sets and mappings standard approaches toward global universes of all sets. We discuss here the corresponding situation for fuzzy set theory.Our emphasis will be on various approaches toward (more or less naively formed)universes of fuzzy sets as well as on axiomatizations, and on categories of fuzzy sets.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Comprehension contradicts to the induction within Łukasiewicz predicate logic.Shunsuke Yatabe - 2009 - Archive for Mathematical Logic 48 (3-4):265-268.
    We introduce the simpler and shorter proof of Hajek’s theorem that the mathematical induction on ω implies a contradiction in the set theory with the comprehension principle within Łukasiewicz predicate logic Ł ${\forall}$ (Hajek Arch Math Logic 44(6):763–782, 2005) by extending the proof in (Yatabe Arch Math Logic, accepted) so as to be effective in any linearly ordered MV-algebra.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forcing in łukasiewicz predicate logic.Antonio Di Nola, George Georgescu & Luca Spada - 2008 - Studia Logica 89 (1):111-145.
    In this paper we study the notion of forcing for Łukasiewicz predicate logic (Ł∀, for short), along the lines of Robinson’s forcing in classical model theory. We deal with both finite and infinite forcing. As regard to the former we prove a Generic Model Theorem for Ł∀, while for the latter, we study the generic and existentially complete standard models of Ł∀.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Forcing in Łukasiewicz Predicate Logic.Antonio Di Nola, George Georgescu & Luca Spada - 2008 - Studia Logica 89 (1):111-145.
    In this paper we study the notion of forcing for Łukasiewicz predicate logic (Ł∀, for short), along the lines of Robinson’s forcing in classical model theory. We deal with both finite and infinite forcing. As regard to the former we prove a Generic Model Theorem for Ł∀, while for the latter, we study the generic and existentially complete standard models of Ł∀.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the crispness of and arithmetic with a bisimulation in a constructive naive set theory.S. Yatabe - 2014 - Logic Journal of the IGPL 22 (3):482-493.
    Download  
     
    Export citation  
     
    Bookmark