Switch to: References

Add citations

You must login to add citations.
  1. Some (non)tautologies of łukasiewicz and product logic.Petr Hájek - 2010 - Review of Symbolic Logic 3 (2):273-278.
    The paper presents a particular example of a formula which is a standard tautology of Łukasiewicz but not its general tautology; an example of a model in which the formula is not true is explicitly constructed. Analogous example of a formula and its model is given for product logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • On elementary equivalence in fuzzy predicate logics.Pilar Dellunde & Francesc Esteva - 2013 - Archive for Mathematical Logic 52 (1-2):1-17.
    Our work is a contribution to the model theory of fuzzy predicate logics. In this paper we characterize elementary equivalence between models of fuzzy predicate logic using elementary mappings. Refining the method of diagrams we give a solution to an open problem of Hájek and Cintula (J Symb Log 71(3):863–880, 2006, Conjectures 1 and 2). We investigate also the properties of elementary extensions in witnessed and quasi-witnessed theories, generalizing some results of Section 7 of Hájek and Cintula (J Symb Log (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (15 other versions)2007 European Summer Meeting of the Association for Symbolic Logic: Logic Colloquium '07.Steffen Lempp - 2008 - Bulletin of Symbolic Logic 14 (1):123-159.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strict core fuzzy logics and quasi-witnessed models.Marco Cerami & Francesc Esteva - 2011 - Archive for Mathematical Logic 50 (5-6):625-641.
    In this paper we prove strong completeness of axiomatic extensions of first-order strict core fuzzy logics with the so-called quasi-witnessed axioms with respect to quasi-witnessed models. As a consequence we obtain strong completeness of Product Predicate Logic with respect to quasi-witnessed models, already proven by M.C. Laskowski and S. Malekpour in [19]. Finally we study similar problems for expansions with Δ, define Δ-quasi-witnessed axioms and prove that any axiomatic extension of a first-order strict core fuzzy logic, expanded with Δ, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Trakhtenbrot Theorem and First-Order Axiomatic Extensions of MTL.Matteo Bianchi & Franco Montagna - 2015 - Studia Logica 103 (6):1163-1181.
    In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable. In 1999, P. Hájek generalized this result to the first-order versions of Łukasiewicz, Gödel and Product logics, w.r.t. their standard algebras. In this paper we extend the analysis to the first-order versions of axiomatic extensions of MTL. Our main result is the following. Let \ be a class of MTL-chains. Then the set of all first-order tautologies associated to the finite models (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Löwenheim–Skolem theorems for non-classical first-order algebraizable logics: Table 1.Pilar Dellunde, Àngel García-Cerdaña & Carles Noguera - 2016 - Logic Journal of the IGPL 24 (3):321-345.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On witnessed models in fuzzy logic III - witnessed Gödel logics.Petr Häjek - 2010 - Mathematical Logic Quarterly 56 (2):171-174.
    Gödel logics with truth sets being countable closed subsets of the unit real interval containing 0 and 1 are studied under their usual semantics and under the witnessed semantics, the latter admitting only models in which the truth value of each universally quantified formula is the minimum of truth values of its instances and dually for existential quantification and maximum. An infinite system of such truth sets is constructed such that under the usual semantics the corresponding logics have pairwise different (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Variety Generated by all the Ordinal Sums of Perfect MV-Chains.Matteo Bianchi - 2013 - Studia Logica 101 (1):11-29.
    We present the logic BLChang, an axiomatic extension of BL (see [23]) whose corresponding algebras form the smallest variety containing all the ordinal sums of perfect MV-chains. We will analyze this logic and the corresponding algebraic semantics in the propositional and in the first-order case. As we will see, moreover, the variety of BLChang-algebras will be strictly connected to the one generated by Chang’s MV-algebra (that is, the variety generated by all the perfect MV-algebras): we will also give some new (...)
    Download  
     
    Export citation  
     
    Bookmark