Switch to: References

Add citations

You must login to add citations.
  1. Omitting types for infinitary [ 0, 1 ] -valued logic.Christopher J. Eagle - 2014 - Annals of Pure and Applied Logic 165 (3):913-932.
    We describe an infinitary logic for metric structures which is analogous to Lω1,ω. We show that this logic is capable of expressing several concepts from analysis that cannot be expressed in finitary continuous logic. Using topological methods, we prove an omitting types theorem for countable fragments of our infinitary logic. We use omitting types to prove a two-cardinal theorem, which yields a strengthening of a result of Ben Yaacov and Iovino concerning separable quotients of Banach spaces.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conservative extension of polyadic MV-algebras to polyadic pavelka algebras.Dumitru Daniel Drăgulici - 2006 - Archive for Mathematical Logic 45 (5):601-613.
    In this paper we prove polyadic counterparts of the Hájek, Paris and Shepherdson's conservative extension theorems of Łukasiewicz predicate logic to rational Pavelka predicate logic. We also discuss the algebraic correspondents of the provability and truth degree for polyadic MV-algebras and prove a representation theorem similar to the one for polyadic Pavelka algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical fuzzy logics.Siegfried Gottwald - 2008 - Bulletin of Symbolic Logic 14 (2):210-239.
    The last decade has seen an enormous development in infinite-valued systems and in particular in such systems which have become known as mathematical fuzzy logics. The paper discusses the mathematical background for the interest in such systems of mathematical fuzzy logics, as well as the most important ones of them. It concentrates on the propositional cases, and mentions the first-order systems more superficially. The main ideas, however, become clear already in this restricted setting.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A note on the notion of truth in fuzzy logic.Petr Hájek & John Shepherdson - 2001 - Annals of Pure and Applied Logic 109 (1-2):65-69.
    In fuzzy predicate logic, assignment of truth values may be partial, i.e. the truth value of a formula in an interpretation may be undefined . A logic is supersound if each provable formula is true in each interpretation in which the truth value of is defined. It is shown that among the logics given by continuous t-norms, Gödel logic is the only one that is supersound; all others are not supersound. This supports the view that the usual restriction of semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties.Francesc Esteva, Lluís Godo & Carles Noguera - 2010 - Annals of Pure and Applied Logic 161 (2):185-202.
    This paper aims at being a systematic investigation of different completeness properties of first-order predicate logics with truth-constants based on a large class of left-continuous t-norms . We consider standard semantics over the real unit interval but also we explore alternative semantics based on the rational unit interval and on finite chains. We prove that expansions with truth-constants are conservative and we study their real, rational and finite chain completeness properties. Particularly interesting is the case of considering canonical real and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Supersound many-valued logics and Dedekind-MacNeille completions.Matteo Bianchi & Franco Montagna - 2009 - Archive for Mathematical Logic 48 (8):719-736.
    In Hájek et al. (J Symb Logic 65(2):669–682, 2000) the authors introduce the concept of supersound logic, proving that first-order Gödel logic enjoys this property, whilst first-order Łukasiewicz and product logics do not; in Hájek and Shepherdson (Ann Pure Appl Logic 109(1–2):65–69, 2001) this result is improved showing that, among the logics given by continuous t-norms, Gödel logic is the only one that is supersound. In this paper we will generalize the previous results. Two conditions will be presented: the first (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Algebraic Proof of Completeness for Monadic Fuzzy Predicate Logic.Jun Tao Wang & Hongwei Wu - forthcoming - Review of Symbolic Logic:1-27.
    Monoidal t-norm based logic $\mathbf {MTL}$ is the weakest t-norm based residuated fuzzy logic, which is a $[0,1]$ -valued propositional logical system having a t-norm and its residuum as truth function for conjunction and implication. Monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ that consists of the formulas with unary predicates and just one object variable, is the monadic fragment of fuzzy predicate logic $\mathbf {MTL\forall }$, which is indeed the predicate version of monoidal t-norm based logic $\mathbf {MTL}$. The main (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Forcing in łukasiewicz predicate logic.Antonio Di Nola, George Georgescu & Luca Spada - 2008 - Studia Logica 89 (1):111-145.
    In this paper we study the notion of forcing for Łukasiewicz predicate logic (Ł∀, for short), along the lines of Robinson’s forcing in classical model theory. We deal with both finite and infinite forcing. As regard to the former we prove a Generic Model Theorem for Ł∀, while for the latter, we study the generic and existentially complete standard models of Ł∀.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Omitting uncountable types and the strength of [0,1]-valued logics.Xavier Caicedo & José N. Iovino - 2014 - Annals of Pure and Applied Logic 165 (6):1169-1200.
    We study a class of [0,1][0,1]-valued logics. The main result of the paper is a maximality theorem that characterizes these logics in terms of a model-theoretic property, namely, an extension of the omitting types theorem to uncountable languages.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)2004 Summer Meeting of the Association for Symbolic Logic.Wolfram Pohlers - 2005 - Bulletin of Symbolic Logic 11 (2):249-312.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forcing in Łukasiewicz Predicate Logic.Antonio Di Nola, George Georgescu & Luca Spada - 2008 - Studia Logica 89 (1):111-145.
    In this paper we study the notion of forcing for Łukasiewicz predicate logic (Ł∀, for short), along the lines of Robinson’s forcing in classical model theory. We deal with both finite and infinite forcing. As regard to the former we prove a Generic Model Theorem for Ł∀, while for the latter, we study the generic and existentially complete standard models of Ł∀.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arithmetical complexity of fuzzy predicate logics—a survey II.Petr Hájek - 2010 - Annals of Pure and Applied Logic 161 (2):212-219.
    Results on arithmetical complexity of important sets of formulas of several fuzzy predicate logics are surveyed and some new results are proven.
    Download  
     
    Export citation  
     
    Bookmark   3 citations