Switch to: References

Add citations

You must login to add citations.
  1. What Does It Mean That “Space Can Be Transcendental Without the Axioms Being So”?: Helmholtz’s Claim in Context.Francesca Biagioli - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (1):1-21.
    In 1870, Hermann von Helmholtz criticized the Kantian conception of geometrical axioms as a priori synthetic judgments grounded in spatial intuition. However, during his dispute with Albrecht Krause (Kant und Helmholtz über den Ursprung und die Bedeutung der Raumanschauung und der geometrischen Axiome. Lahr, Schauenburg, 1878), Helmholtz maintained that space can be transcendental without the axioms being so. In this paper, I will analyze Helmholtz’s claim in connection with his theory of measurement. Helmholtz uses a Kantian argument that can be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Arithmetic and geometry: Some remarks on the concept of complementarity.M. Otte - 1990 - Studies in Philosophy and Education 10 (1):37-62.
    This paper explores the classical idea of complementarity in mathematics concerning the relationship of intuition and axiomatic proof. Section I illustrates the basic concepts of the paper, while Section II presents opposing accounts of intuitionist and axiomatic approaches to mathematics. Section III analyzes one of Einstein's lecture on the topic and Section IV examines an application of the issues in mathematics and science education. Section V discusses the idea of complementarity by examining one of Zeno's paradoxes. This is followed by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations