Switch to: References

Add citations

You must login to add citations.
  1. Conceptual limitations, puzzlement, and epistemic dilemmas.Deigan Michael - 2023 - Philosophical Studies 180 (9):2771-2796.
    Conceptual limitations restrict our epistemic options. One cannot believe, disbelieve, or doubt what one cannot grasp. I show how, even granting an epistemic ought-implies-can principle, such restrictions might lead to epistemic dilemmas: situations where each of one’s options violates some epistemic requirement. An alternative reaction would be to take epistemic norms to be sensitive to one’s options in ways that ensure dilemmas never arise. I propose, on behalf of the dilemmist, that we treat puzzlement as a kind of epistemic residue, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Justified Epistemic Exclusions in Mathematics.Colin Jakob Rittberg - 2023 - Philosophia Mathematica 31 (3):330-359.
    Who gets to contribute to knowledge production of an epistemic community? Scholarship has focussed on unjustified forms of exclusion. Here I study justified forms of exclusion by investigating the phenomenon of so-called ‘cranks’ in mathematics. I argue that workload-management concerns justify the exclusion of these outsiders from mathematical knowledge-making practices. My discussion reveals three insights. There are reasons other than incorrect mathematical argument that justify exclusions from mathematical practices. There are instances in which mathematicians are justified in rejecting even correct (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Defending Wittgenstein.Piotr Dehnel - 2023 - Philosophical Investigations 47 (1):137-149.
    Samuel J. Wheeler defends Wittgenstein's criticism of Cantor's set theory against the objections raised by Hilary Putnam. Putnam claims that Wittgenstein's dismissal of the basic tenets of this set theory concerning the noncountability of the set of real numbers was unfounded and ill‐conceived. In Wheeler's view, Putnam's charges result from his failure to grasp Wittgenstein's intention and, in particular, to consider the difference between empirical and logical impossibility. In my paper, I argue that Wheeler's defence is unsuccessful and, at the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A Monstrous Inference called Mahāvidyānumāna and Cantor’s Diagonal Argument.Nirmalya Guha - 2016 - Journal of Indian Philosophy 44 (3):557-579.
    A mahāvidyā inference is used for establishing another inference. Its Reason is normally an omnipresent property. Its Target is defined in terms of a general feature that is satisfied by different properties in different cases. It assumes that there is no case that has the absence of its Target. The main defect of a mahāvidyā inference μ is a counterbalancing inference that can be formed by a little modification of μ. The discovery of its counterbalancing inference can invalidate such an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein in Cantor's paradise.Karim Zahidi - 2024 - Philosophical Investigations 47 (4):484-500.
    This paper offers an evaluation of Wittgenstein's critique of Cantorian set theory, illustrating his broader philosophical stance on mathematics. By emphasizing the constructed nature of mathematical theories, Wittgenstein encourages a reflective approach to mathematics that acknowledges human agency in its development. His engagement with Cantorian set theory provides valuable insights into the philosophical and practical dimensions of mathematics, urging a reconsideration of its foundations and the nature of mathematical proofs. This perspective aligns closely with the philosophy of mathematical practice, which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Snag in Cantor’s Paradise.Aribam Uttam Sharma - 2020 - Axiomathes 31 (4):525-527.
    The paper claims that the strategy adopted in the proof of Cantor’s theorem is problematic. Using the strategy, an unacceptable situation is built. The paper also makes the suggestion that the proof of Cantor’s theorem is possible due to lack of an apparatus to represent emptiness at a certain level in the ontology of set-theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some Critical Notes on the Cantor Diagonal Argument.Philip Molyneux - 2022 - Open Journal of Philosophy 12 (3):255-265.
    Download  
     
    Export citation  
     
    Bookmark  
  • Naive Infinitism: The Case for an Inconsistency Approach to Infinite Collections.Toby Meadows - 2015 - Notre Dame Journal of Formal Logic 56 (1):191-212.
    This paper expands upon a way in which we might rationally doubt that there are multiple sizes of infinity. The argument draws its inspiration from recent work in the philosophy of truth and philosophy of set theory. More specifically, elements of contextualist theories of truth and multiverse accounts of set theory are brought together in an effort to make sense of Cantor’s troubling theorem. The resultant theory provides an alternative philosophical perspective on the transfinite, but has limited impact on everyday (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations