Switch to: References

Citations of:

Causation in spacetime theories

In Helen Beebee, Christopher Hitchcock & Peter Menzies (eds.), The Oxford Handbook of Causation. Oxford University Press UK. pp. 685--704 (2009)

Add citations

You must login to add citations.
  1. Fundamental non-qualitative properties.Byron Simmons - 2021 - Synthese 198 (7):6183-6206.
    The distinction between qualitative and non-qualitative properties should be familiar from discussions of the principle of the identity of indiscernibles: two otherwise exactly similar individuals, Castor and Pollux, might share all their qualitative properties yet differ with respect to their non-qualitative properties—for while Castor has the property being identical to Castor, Pollux does not. But while this distinction is familiar, there has not been much critical attention devoted to spelling out its precise nature. I argue that the class of non-qualitative (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Argument from Physics and General Relativity.Christopher Gregory Weaver - 2020 - Erkenntnis 85 (2):333-373.
    I argue that the best interpretation of the general theory of relativity has need of a causal entity, and causal structure that is not reducible to light cone structure. I suggest that this causal interpretation of GTR helps defeat a key premise in one of the most popular arguments for causal reductionism, viz., the argument from physics.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Meaning of Relativity and the Liberation of the Relationalists.Patrick Dürr - unknown
    We analyse the various conceptual notions that go under the umbrella “relationalism/substantivalism”. Our focus will be on evaluating the ontological status of spacetime in General Relativity. To this end we systematically develop the ontological framework that implicitly underlies the traditional debate and common understanding of physics. We submit that spacetime with its chronogeometric and inertial structure, represented by the triple of the bare manifold, the metric and the affine structure, is best construed as the totality of possible and actual spatiotemporal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific explanation as ampliative, specialized embedding: the case of classical genetics.José Díez & Pablo Lorenzano - 2022 - Synthese 200 (6):1-25.
    Explanations in genetics have intriguing aspects to both biologists and philosophers, and there is no account that satisfactorily elucidates such explanations. The aim of this article is to analyze the kind of explanations usually given in Classical (Transmission) Genetics (CG) and to present in detail the application of an account of explanation as ampliative, specialized nomological embedding to elucidate the such explanations. First, we present explanations in CG in the classical format of inferences with the explanans as the premises and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scientific w-Explanation as Ampliative, Specialized Embedding: A Neo-Hempelian Account.José Díez - 2014 - Erkenntnis 79 (S8):1413-1443.
    The goal of this paper is to present and defend an empiricist, neo-Hempelian account of scientific explanation as ampliative, specialized embedding. The proposal aims to preserve what I take to be the core of Hempel’s empiricist account, by weakening it in some respects and strengthening it in others, introducing two new conditions that solve most of Hempel’s problems without abandoning his empiricist strictures. According to this proposal, to explain a phenomenon is to make it expectable by introducing new conceptual/ontological machinery (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The general-relativistic case for super-substantivalism.Claudio Calosi & Patrick M. Duerr - 2021 - Synthese 199 (5-6):13789-13822.
    Super-substantivalism (of the type we’ll consider) roughly comprises two core tenets: (1) the physical properties which we attribute to matter (e.g. charge or mass) can be attributed to spacetime directly, with no need for matter as an extraneous carrier “on top of” spacetime; (2) spacetime is more fundamental than (ontologically prior to) matter. In the present paper, we revisit a recent argument in favour of super-substantivalism, based on General Relativity. A critique is offered that highlights the difference between (various accounts (...)
    Download  
     
    Export citation  
     
    Bookmark