Switch to: References

Add citations

You must login to add citations.
  1. Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Stable and Unstable Theories of Truth and Syntax.Beau Madison Mount & Daniel Waxman - 2021 - Mind 130 (518):439-473.
    Recent work on formal theories of truth has revived an approach, due originally to Tarski, on which syntax and truth theories are sharply distinguished—‘disentangled’—from mathematical base theories. In this paper, we defend a novel philosophical constraint on disentangled theories. We argue that these theories must be epistemically stable: they must possess an intrinsic motivation justifying no strictly stronger theory. In a disentangled setting, even if the base and the syntax theory are individually stable, they may be jointly unstable. We contend (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Axiomatic truth, syntax and metatheoretic reasoning.Graham E. Leigh & Carlo Nicolai - 2013 - Review of Symbolic Logic 6 (4):613-636.
    Following recent developments in the literature on axiomatic theories of truth, we investigate an alternative to the widespread habit of formalizing the syntax of the object-language into the object-language itself. We first argue for the proposed revision, elaborating philosophical evidences in favor of it. Secondly, we present a general framework for axiomatic theories of truth with theories of syntax. Different choices of the object theory O will be considered. Moreover, some strengthenings of these theories will be introduced: we will consider (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Number determiners, numbers, and arithmetic.Thomas Hofweber - 2005 - Philosophical Review 114 (2):179-225.
    In his groundbreaking Grundlagen, Frege (1884) pointed out that number words like ‘four’ occur in ordinary language in two quite different ways and that this gives rise to a philosophical puzzle. On the one hand ‘four’ occurs as an adjective, which is to say that it occurs grammatically in sentences in a position that is commonly occupied by adjectives. Frege’s example was (1) Jupiter has four moons, where the occurrence of ‘four’ seems to be just like that of ‘green’ in (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • A new definition of reduction between two scientific theories: no reduction of chemistry to quantum mechanics.Antonino Drago - 2020 - Foundations of Chemistry 22 (3):421-445.
    All suggested notions of reduction of two scientific theories are critically reviewed and analyzed. In particular those applied to the case of the alleged reduction of Chemistry to Quantum mechanics are examined. Since it is recognized that the weakness of this field of research is the lack of a definition of a scientific theory, it is suggested that a scientific theory is characterized by two choices regarding two dichotomies, that is, the kind of mathematics and the kind of logic. According (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Replies to Bennett, Rayo, and Sattig.Thomas Hofweber - 2017 - Philosophy and Phenomenological Research 94 (2):488-504.
    Download  
     
    Export citation  
     
    Bookmark   3 citations