Switch to: References

Add citations

You must login to add citations.
  1. Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Mathematics and Set Theory:数学と集合論.Sakaé Fuchino - 2018 - Journal of the Japan Association for Philosophy of Science 46 (1):33-47.
    Download  
     
    Export citation  
     
    Bookmark  
  • Saturated models in institutions.Răzvan Diaconescu & Marius Petria - 2010 - Archive for Mathematical Logic 49 (6):693-723.
    Saturated models constitute one of the powerful methods of conventional model theory, with many applications. Here we develop a categorical abstract model theoretic approach to saturated models within the theory of institutions. The most important consequence is that the method of saturated models becomes thus available to a multitude of logical systems from logic or from computing science. In this paper we define the concept of saturated model at an abstract institution-independent level and develop the fundamental existence and uniqueness theorems. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-saturation of the nonstationary ideal on Pκ(λ) in case κ ≤ cf (λ) < λ.Pierre Matet - 2012 - Archive for Mathematical Logic 51 (3-4):425-432.
    Given a regular cardinal κ > ω1 and a cardinal λ with κ ≤ cf (λ) < λ, we show that NSκ,λ | T is not λ+-saturated, where T is the set of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in P_\kappa (\lambda)}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${| a | = | a \cap \kappa|}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm cf} \big( {\rm sup} (a\cap\kappa)\big) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations