Switch to: References

Add citations

You must login to add citations.
  1. The Beth Property in Algebraic Logic.W. J. Blok & Eva Hoogland - 2006 - Studia Logica 83 (1-3):49-90.
    The present paper is a study in abstract algebraic logic. We investigate the correspondence between the metalogical Beth property and the algebraic property of surjectivity of epimorphisms. It will be shown that this correspondence holds for the large class of equivalential logics. We apply our characterization theorem to relevance logics and many-valued logics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Beth definability and the Stone-Weierstrass Theorem.Luca Reggio - 2021 - Annals of Pure and Applied Logic 172 (8):102990.
    The Stone-Weierstrass Theorem for compact Hausdorff spaces is a basic result of functional analysis with far-reaching consequences. We introduce an equational logic ⊨Δ associated with an infinitary variety Δ and show that the Stone-Weierstrass Theorem is a consequence of the Beth definability property of ⊨Δ, stating that every implicit definition can be made explicit. Further, we define an infinitary propositional logic ⊢Δ by means of a Hilbert-style calculus and prove a strong completeness result whereby the semantic notion of consequence associated (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semiconic idempotent logic II: Beth definability and deductive interpolation.Wesley Fussner & Nikolaos Galatos - 2025 - Annals of Pure and Applied Logic 176 (3):103528.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epimorphisms, Definability and Cardinalities.T. Moraschini, J. G. Raftery & J. J. Wannenburg - 2020 - Studia Logica 108 (2):255-275.
    We characterize, in syntactic terms, the ranges of epimorphisms in an arbitrary class of similar first-order structures. This allows us to strengthen a result of Bacsich, as follows: in any prevariety having at most \ non-logical symbols and an axiomatization requiring at most \ variables, if the epimorphisms into structures with at most \ elements are surjective, then so are all of the epimorphisms. Using these facts, we formulate and prove manageable ‘bridge theorems’, matching the surjectivity of all epimorphisms in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Epimorphism surjectivity in varieties of Heyting algebras.T. Moraschini & J. J. Wannenburg - 2020 - Annals of Pure and Applied Logic 171 (9):102824.
    It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K . It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Projective Beth Property in Extensions of Grzegorczyk Logic.Larisa Maksimova - 2006 - Studia Logica 83 (1):365-391.
    All extensions of the modal Grzegorczyk logic Grz possessing projective Beth's property PB2 are described. It is proved that there are exactly 13 logics over Grz with PB2. All of them are finitely axiomatizable and have the finite model property. It is shown that PB2 is strongly decidable over Grz, i.e. there is an algorithm which, for any finite system Rul of additional axiom schemes and rules of inference, decides if the calculus Grz+Rul has the projective Beth property.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logic Families.Hajnal Andréka, Zalán Gyenis, István Németi & Ildikó Sain - forthcoming - Studia Logica:1-47.
    A logic family is a bunch of logics that belong together in some way. First-order logic is one of the examples. Logics organized into a structure occur in abstract model theory, institution theory and in algebraic logic. Logic families play a role in adopting methods for investigating sentential logics to first-order like logics. We thoroughly discuss the notion of logic families as defined in the recent Universal Algebraic Logic book.
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraizable logics and a functorial encoding of its morphisms.Darllan Conceição Pinto & Hugo Luiz Mariano - 2017 - Logic Journal of the IGPL 25 (4):524-561.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two-variable logic has weak, but not strong, Beth definability.Hajnal Andréka & István Németi - 2021 - Journal of Symbolic Logic 86 (2):785-800.
    We prove that the two-variable fragment of first-order logic has the weak Beth definability property. This makes the two-variable fragment a natural logic separating the weak and the strong Beth properties since it does not have the strong Beth definability property.
    Download  
     
    Export citation  
     
    Bookmark