Switch to: References

Add citations

You must login to add citations.
  1. Reduction of higher type levels by means of an ordinal analysis of finite terms.Jan Terlouw - 1985 - Annals of Pure and Applied Logic 28 (1):73-102.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to assign ordinal numbers to combinatory terms with polymorphic types.William R. Stirton - 2012 - Archive for Mathematical Logic 51 (5):475-501.
    The article investigates a system of polymorphically typed combinatory logic which is equivalent to Gödel’s T. A notion of (strong) reduction is defined over terms of this system and it is proved that the class of well-formed terms is closed under both bracket abstraction and reduction. The main new result is that the number of contractions needed to reduce a term to normal form is computed by an ε 0-recursive function. The ordinal assignments used to obtain this result are also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Combinatory logic with polymorphic types.William R. Stirton - 2022 - Archive for Mathematical Logic 61 (3):317-343.
    Sections 1 through 4 define, in the usual inductive style, various classes of object including one which is called the “combinatory terms of polymorphic type”. Section 5 defines a reduction relation on these terms. Section 6 shows that the weak normalizability of the combinatory terms of polymorphic type entails the weak normalizability of the lambda terms of polymorphic type. The entailment is not vacuous, because the combinatory terms of polymorphic type are indeed weakly normalizable, as is proven in Sect. 7 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An upper bound for reduction sequences in the typed λ-calculus.Helmut Schwichtenberg - 1991 - Archive for Mathematical Logic 30 (5-6):405-408.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Limits of Computation.Andrew Powell - 2022 - Axiomathes 32 (6):991-1011.
    This article provides a survey of key papers that characterise computable functions, but also provides some novel insights as follows. It is argued that the power of algorithms is at least as strong as functions that can be proved to be totally computable in type-theoretic translations of subsystems of second-order Zermelo Fraenkel set theory. Moreover, it is claimed that typed systems of the lambda calculus give rise naturally to a functional interpretation of rich systems of types and to a hierarchy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Primitive Recursion and the Chain Antichain Principle.Alexander P. Kreuzer - 2012 - Notre Dame Journal of Formal Logic 53 (2):245-265.
    Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb{N}$ possesses an infinite chain or an infinite antichain. Chong, Slaman, and Yang recently proved using forcing over nonstandard models of arithmetic that CAC is $\Pi^1_1$-conservative over $\text{RCA}_0+\Pi^0_1\text{-CP}$ and so in particular that CAC does not imply $\Sigma^0_2$-induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply $\Sigma^0_2$-induction. In detail we show using a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Representing definable functions of HA by neighbourhood functions.Tatsuji Kawai - 2019 - Annals of Pure and Applied Logic 170 (8):891-909.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a specific sequence of (...)
    Download  
     
    Export citation  
     
    Bookmark