Switch to: References

Add citations

You must login to add citations.
  1. On the Strength of Ramsey's Theorem.David Seetapun & Theodore A. Slaman - 1995 - Notre Dame Journal of Formal Logic 36 (4):570-582.
    We show that, for every partition F of the pairs of natural numbers and for every set C, if C is not recursive in F then there is an infinite set H, such that H is homogeneous for F and C is not recursive in H. We conclude that the formal statement of Ramsey's Theorem for Pairs is not strong enough to prove , the comprehension scheme for arithmetical formulas, within the base theory , the comprehension scheme for recursive formulas. (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Partition theorems and computability theory.Joseph R. Mileti - 2005 - Bulletin of Symbolic Logic 11 (3):411-427.
    The connections between mathematical logic and combinatorics have a rich history. This paper focuses on one aspect of this relationship: understanding the strength, measured using the tools of computability theory and reverse mathematics, of various partition theorems. To set the stage, recall two of the most fundamental combinatorial principles, König's Lemma and Ramsey's Theorem. We denote the set of natural numbers by ω and the set of finite sequences of natural numbers by ω<ω. We also identify each n ∈ ω (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (15 other versions)2008 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '08.Alex J. Wilkie - 2009 - Bulletin of Symbolic Logic 15 (1):95-139.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse Mathematics and Ramsey Properties of Partial Orderings.Jared Corduan & Marcia Groszek - 2016 - Notre Dame Journal of Formal Logic 57 (1):1-25.
    A partial ordering $\mathbb{P}$ is $n$-Ramsey if, for every coloring of $n$-element chains from $\mathbb{P}$ in finitely many colors, $\mathbb{P}$ has a homogeneous subordering isomorphic to $\mathbb{P}$. In their paper on Ramsey properties of the complete binary tree, Chubb, Hirst, and McNicholl ask about Ramsey properties of other partial orderings. They also ask whether there is some Ramsey property for pairs equivalent to $\mathit{ACA}_{0}$ over $\mathit{RCA}_{0}$. A characterization theorem for finite-level partial orderings with Ramsey properties has been proven by the (...)
    Download  
     
    Export citation  
     
    Bookmark