Switch to: References

Add citations

You must login to add citations.
  1. Ramsey’s theorem for trees: the polarized tree theorem and notions of stability. [REVIEW]Damir D. Dzhafarov, Jeffry L. Hirst & Tamara J. Lakins - 2010 - Archive for Mathematical Logic 49 (3):399-415.
    We formulate a polarized version of Ramsey’s theorem for trees. For those exponents greater than 2, both the reverse mathematics and the computability theory associated with this theorem parallel that of its linear analog. For pairs, the situation is more complex. In particular, there are many reasonable notions of stability in the tree setting, complicating the analysis of the related results.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Partition theorems and computability theory.Joseph R. Mileti - 2005 - Bulletin of Symbolic Logic 11 (3):411-427.
    The connections between mathematical logic and combinatorics have a rich history. This paper focuses on one aspect of this relationship: understanding the strength, measured using the tools of computability theory and reverse mathematics, of various partition theorems. To set the stage, recall two of the most fundamental combinatorial principles, König's Lemma and Ramsey's Theorem. We denote the set of natural numbers by ω and the set of finite sequences of natural numbers by ω<ω. We also identify each n ∈ ω (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (2 other versions)2000 Annual Meeting of the Association for Symbolic Logic.A. Pillay, D. Hallett, G. Hjorth, C. Jockusch, A. Kanamori, H. J. Keisler & V. McGee - 2000 - Bulletin of Symbolic Logic 6 (3):361-396.
    Download  
     
    Export citation  
     
    Bookmark