Switch to: References

Add citations

You must login to add citations.
  1. Commutative Lambek Grammars.Tikhon Pshenitsyn - 2023 - Journal of Logic, Language and Information 32 (5):887-936.
    Lambek categorial grammars is a class of formal grammars based on the Lambek calculus. Pentus proved in 1993 that they generate exactly the class of context-free languages without the empty word. In this paper, we study categorial grammars based on the Lambek calculus with the permutation rule LP. Of particular interest is the product-free fragment of LP called the Lambek-van Benthem calculus LBC. Buszkowski in his 1984 paper conjectured that grammars based on the Lambek-van Benthem calculus (LBC-grammars for short) generate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Studies in the logic of K -onfirmation.Clayton Peterson - 2019 - Philosophical Studies 176 (2):437-471.
    This research article revisits Hempel’s logic of confirmation in light of recent developments in categorical proof theory. While Hempel advocated several logical conditions in favor of a purely syntactical definition of a general non-quantitative concept of confirmation, we show how these criteria can be associated to specific logical properties of monoidal modal deductive systems. In addition, we show that many problems in confirmation logic, such as the tacked disjunction, the problem of weakening with background knowledge and the problem of irrelevant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Monoidal logics: completeness and classical systems.Clayton Peterson - 2019 - Journal of Applied Non-Classical Logics 29 (2):121-151.
    ABSTRACTMonoidal logics were introduced as a foundational framework to analyze the proof theory of logical systems. Inspired by Lambek's seminal work in categorical logic, the objective is to defin...
    Download  
     
    Export citation  
     
    Bookmark  
  • A comparison between monoidal and substructural logics.Clayton Peterson - 2016 - Journal of Applied Non-Classical Logics 26 (2):126-159.
    Monoidal logics were introduced as a foundational framework to analyse the proof theory of deontic logic. Building on Lambek’s work in categorical logic, logical systems are defined as deductive systems, that is, as collections of equivalence classes of proofs satisfying specific rules and axiom schemata. This approach enables the classification of deductive systems with respect to their categorical structure. When looking at their proof theory, however, one can see that there are similarities between monoidal and substructural logics. The purpose of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Coherence in SMCCs and equivalences on derivations in IMLL with unit.L. Mehats & Sergei Soloviev - 2007 - Annals of Pure and Applied Logic 147 (3):127-179.
    We study the coherence, that is the equality of canonical natural transformations in non-free symmetric monoidal closed categories . To this aim, we use proof theory for intuitionistic multiplicative linear logic with unit. The study of coherence in non-free smccs is reduced to the study of equivalences on terms in the free category, which include the equivalences induced by the smcc structure. The free category is reformulated as the sequent calculus for imll with unit so that only equivalences on derivations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof theory in the abstract.J. M. E. Hyland - 2002 - Annals of Pure and Applied Logic 114 (1-3):43-78.
    Categorical proof theory is an approach to understanding the structure of proofs. We illustrate the idea first by analyzing G0̈del's Dialectica interpretation and the Diller-Nahm variant in categorical terms. Then we consider the problematic question of the structure of classical proofs. We show how double negation translations apply in the case of the Dialectica interpretations. Finally we formulate a proposal as to how to give a more faithful analysis of proofs in the sequent calculus.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Investigations into a left-structural right-substructural sequent calculus.Lloyd Humberstone - 2007 - Journal of Logic, Language and Information 16 (2):141-171.
    We study a multiple-succedent sequent calculus with both of the structural rules Left Weakening and Left Contraction but neither of their counterparts on the right, for possible application to the treatment of multiplicative disjunction against the background of intuitionistic logic. We find that, as Hirokawa dramatically showed in a 1996 paper with respect to the rules for implication, the rules for this connective render derivable some new structural rules, even though, unlike the rules for implication, these rules are what we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • 1998 European Summer Meeting of the Association for Symbolic Logic.S. Buss - 1999 - Bulletin of Symbolic Logic 5 (1):59-153.
    Download  
     
    Export citation  
     
    Bookmark  
  • A note on full intuitionistic linear logic.G. M. Bierman - 1996 - Annals of Pure and Applied Logic 79 (3):281-287.
    This short note considers the formulation of Full Intuitionistic Linear Logic given by Hyland and de Paiva . Unfortunately the formulation is not closed under the process of cut elimination. This note proposes an alternative formulation based on the notion of patterns.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A formalization of kant’s transcendental logic.Theodora Achourioti & Michiel van Lambalgen - 2011 - Review of Symbolic Logic 4 (2):254-289.
    Although Kant (1998) envisaged a prominent role for logic in the argumentative structure of his Critique of Pure Reason, logicians and philosophers have generally judged Kantgeneralformaltranscendental logics is a logic in the strict formal sense, albeit with a semantics and a definition of validity that are vastly more complex than that of first-order logic. The main technical application of the formalism developed here is a formal proof that Kants logic is after all a distinguished subsystem of first-order logic, namely what (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations