Switch to: References

Add citations

You must login to add citations.
  1. Contra-classical logics.Lloyd Humberstone - 2000 - Australasian Journal of Philosophy 78 (4):438 – 474.
    Only propositional logics are at issue here. Such a logic is contra-classical in a superficial sense if it is not a sublogic of classical logic, and in a deeper sense, if there is no way of translating its connectives, the result of which translation gives a sublogic of classical logic. After some motivating examples, we investigate the incidence of contra-classicality (in the deeper sense) in various logical frameworks. In Sections 3 and 4 we will encounter, originally as an example of (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Intuitionistic Logic is a Connexive Logic.Davide Fazio, Antonio Ledda & Francesco Paoli - 2023 - Studia Logica 112 (1):95-139.
    We show that intuitionistic logic is deductively equivalent to Connexive Heyting Logic ($$\textrm{CHL}$$ CHL ), hereby introduced as an example of a strongly connexive logic with an intuitive semantics. We use the reverse algebraisation paradigm: $$\textrm{CHL}$$ CHL is presented as the assertional logic of a point regular variety (whose structure theory is examined in detail) that turns out to be term equivalent to the variety of Heyting algebras. We provide Hilbert-style and Gentzen-style proof systems for $$\textrm{CHL}$$ CHL ; moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Paraconsistent Weak Kleene Logic: Axiomatisation and Algebraic Analysis.Stefano Bonzio, José Gil-Férez, Francesco Paoli & Luisa Peruzzi - 2017 - Studia Logica 105 (2):253-297.
    Paraconsistent Weak Kleene logic is the 3-valued logic with two designated values defined through the weak Kleene tables. This paper is a first attempt to investigate PWK within the perspective and methods of abstract algebraic logic. We give a Hilbert-style system for PWK and prove a normal form theorem. We examine some algebraic structures for PWK, called involutive bisemilattices, showing that they are distributive as bisemilattices and that they form a variety, \, generated by the 3-element algebra WK; we also (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations