Switch to: References

Add citations

You must login to add citations.
  1. Computability of graphs.Zvonko Iljazović - 2020 - Mathematical Logic Quarterly 66 (1):51-64.
    We consider topological pairs,, which have computable type, which means that they have the following property: if X is a computable topological space and a topological imbedding such that and are semicomputable sets in X, then is a computable set in X. It is known, e.g., that has computable type if M is a compact manifold with boundary. In this paper we examine topological spaces called graphs and we show that we can in a natural way associate to each graph (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chainable and circularly chainable semicomputable sets in computable topological spaces.Eugen Čičković, Zvonko Iljazović & Lucija Validžić - 2019 - Archive for Mathematical Logic 58 (7-8):885-897.
    We examine conditions under which, in a computable topological space, a semicomputable set is computable. It is known that in a computable metric space a semicomputable set S is computable if S is a continuum chainable from a to b, where a and b are computable points, or S is a circularly chainable continuum which is not chainable. We prove that this result holds in any computable topological space.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computability of pseudo-cubes.Marko Horvat, Zvonko Iljazović & Bojan Pažek - 2020 - Annals of Pure and Applied Logic 171 (8):102823.
    We examine topological pairs (\Delta, \Sigma) which have computable type: if X is a computable topological space and f:\Delta \rightarrow X a topological embedding such that f(\Delta) and f(\Sigma) are semicomputable sets in X, then f(\Delta) is a computable set in X. It it known that (D, W) has computable type, where D is the Warsaw disc and W is the Warsaw circle. In this paper we identify a class of topological pairs which are similar to (D, W) and have (...)
    Download  
     
    Export citation  
     
    Bookmark