Switch to: References

Add citations

You must login to add citations.
  1. Non-periodic table of periodicities and periodic table with additional periodicities: tetrad periodicity.Naum S. Imyanitov - 2022 - Foundations of Chemistry 24 (3):331-358.
    This manuscript aims to systematically consider the main periodicity and additional (secondary, internal, and tetrad) periodicities using a uniform approach. The main features are summarized in table form. The history of the origin and development of these concepts is discussed. It is described how these periodicities manifest themselves and how they are determined at the experimental and theoretical levels. Areas of manifestation of these periodicities are outlined. As the general approach to explaining internal periodicity, attention is drawn to the symmetry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Periodic tables for cations + 1, + 2, + 3 and anions − 1. Quantitative characteristics for manifestations of internal periodicity and kainosymmetry. [REVIEW]Naum S. Imyanitov - 2022 - Foundations of Chemistry 24 (2):189-219.
    This paper describes the construction of the Periodic Tables for cations of all elements with charges + 1, + 2, + 3 and anions with charge − 1. The Table for cations+1 differs significantly from other newly constructed Tables and from known Tables, as the d- and f-blocks are inserted into s-block and split it up for two parts. Importantly, a new type of 3d- and 4f-shell contractions has been discovered. The manifestations of secondary periodicity in case of anions is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The location and composition of Group 3 of the periodic table.René E. Vernon - 2021 - Foundations of Chemistry 23 (2):155-197.
    Group 3 as Sc–Y–La, rather than Sc–Y–Lu, dominates the literature. The history of this situation, including involvement by the IUPAC, is summarised. I step back from the minutiae of physical, chemical, and electronic properties and explore considerations of regularity and symmetry, natural kinds, and quantum mechanics, finding these to be inconclusive. Continuing the theme, a series of ten interlocking arguments, in the context of a chemistry-based periodic table, are presented in support of lanthanum in Group 3. In so doing, I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dialectics and synergetics in chemistry. Periodic Table and oscillating reactions.Naum S. Imyanitov - 2015 - Foundations of Chemistry 18 (1):21-56.
    This work utilizes examples from chemical sciences to present fundamentals of dialectics and synergetics. The laws of dialectics remain appropriate at the level of atoms, at the level of molecules, at the level of the reactions, and at the level of ideas. The law of the unity and conflict of opposites is seen, for instance, in the relationships between the ionization energy and electron affinity of atoms, between the forward and back reactions, as well as in the differentiation and integration (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Editorial 63.Eric Scerri - 2019 - Foundations of Chemistry 21 (3):253-254.
    Download  
     
    Export citation  
     
    Bookmark  
  • Three related topics on the periodic tables of elements.Yoshiteru Maeno, Kouichi Hagino & Takehiko Ishiguro - 2020 - Foundations of Chemistry 23 (2):201-214.
    A large variety of periodic tables of the chemical elements have been proposed. It was Mendeleev who proposed a periodic table based on the extensive periodic law and predicted a number of unknown elements at that time. The periodic table currently used worldwide is of a long form pioneered by Werner in 1905. As the first topic, we describe the work of Pfeiffer, who refined Werner’s work and rearranged the rare-earth elements in a separate table below the main table for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does the period table appear doubled? Two variants of division of elements into two subsets. Internal and secondary periodicity.Naum S. Imyanitov - 2018 - Foundations of Chemistry 21 (3):255-284.
    Demarcation of elements for two subsets appears to be the most fundamental approach to their classification. If one draws a vertical straight line through the middle of each block of elements in the Periodic table, all the elements are divided into two subsets: “early” and “later”. For example, in the d-block, the early ones are Sc–Mn, and the late ones, respectively, are Fe–Zn. Later elements partially repeat the properties of the early ones, and this is defined as the internal periodicity. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations