Switch to: References

Add citations

You must login to add citations.
  1. Brouwer’s Weak Counterexamples and the Creative Subject: A Critical Survey.Peter Fletcher - 2020 - Journal of Philosophical Logic 49 (6):1111-1157.
    I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering what useful mathematical work is done by weak counterexamples; whether they are rigorous mathematical proofs or just plausibility arguments; the role of Brouwer’s notion of the creative subject in them, and whether the creative subject is really necessary for them; what axioms for the creative subject are needed; what relation there is between these arguments and Brouwer’s theory of choice sequences. I refute one of Brouwer’s claims with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Banach‐Steinhaus theorem for the space ????(ℝ) in constructive analysis.Satoru Yoshida - 2003 - Mathematical Logic Quarterly 49 (3):305-315.
    We prove the Banach‐Steinhaus theorem for distributions on the space ????(ℝ) within Bishop's constructive mathematics. To this end, we investigate the constructive sequential completion $ \tilde {\cal D} $(ℝ) of ????(ℝ).
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Continuity properties of preference relations.Marian A. Baroni & Douglas S. Bridges - 2008 - Mathematical Logic Quarterly 54 (5):454-459.
    Various types of continuity for preference relations on a metric space are examined constructively. In particular, necessary and sufficient conditions are given for an order-dense, strongly extensional preference relation on a complete metric space to be continuous. It is also shown, in the spirit of constructive reverse mathematics, that the continuity of sequentially continuous, order-dense preference relations on complete, separable metric spaces is connected to Ishihara's principleBD-ℕ, and therefore is not provable within Bishop-style constructive mathematics alone.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weak-operator Continuity and the Existence of Adjoints.Douglas Bridges & Luminita Dediu - 1999 - Mathematical Logic Quarterly 45 (2):203-206.
    It is shown, within constructive mathematics, that the unit ball B1 of the set of bounded operators on a Hilbert space H is weak-operator totally bounded. This result is then used to prove that the weak-operator continuity of the mapping T → AT on B1 is equivalent to the existence of the adjoint of A.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The anti-Specker property, positivity, and total boundedness.Douglas Bridges & Hannes Diener - 2010 - Mathematical Logic Quarterly 56 (4):434-441.
    Working within Bishop-style constructive mathematics, we examine some of the consequences of the anti-Specker property, known to be equivalent to a version of Brouwer's fan theorem. The work is a contribution to constructive reverse mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Uniform Continuity Properties of Preference Relations.Douglas S. Bridges - 2008 - Notre Dame Journal of Formal Logic 49 (1):97-106.
    The anti-Specker property, a constructive version of sequential compactness, is used to prove constructively that a pointwise continuous, order-dense preference relation on a compact metric space is uniformly sequentially continuous. It is then shown that Ishihara's principle BD-ℕ implies that a uniformly sequentially continuous, order-dense preference relation on a separable metric space is uniformly continuous. Converses of these two theorems are also proved.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong continuity implies uniform sequential continuity.Douglas Bridges, Hajime Ishihara, Peter Schuster & Luminiţa Vîţa - 2005 - Archive for Mathematical Logic 44 (7):887-895.
    Uniform sequential continuity, a property classically equivalent to sequential continuity on compact sets, is shown, constructively, to be a consequence of strong continuity on a metric space. It is then shown that in the case of a separable metric space, uniform sequential continuity implies strong continuity if and only if one adopts a certain boundedness principle that, although valid in the classical, recursive and intuitionistic setting, is independent of Heyting arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Arguments for the continuity principle.Mark van Atten & Dirk van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3):329-347.
    There are two principles that lend Brouwer's mathematics the extra power beyond arithmetic. Both are presented in Brouwer's writings with little or no argument. One, the principle of bar induction, will not concern us here. The other, the continuity principle for numbers, occurs for the first time in print in [4]. It is formulated and immediately applied to show that the set of numerical choice sequences is not enumerable. In fact, the idea of the continuity property can be dated fairly (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Apartness spaces as a framework for constructive topology.Douglas Bridges & Luminia Vî - 2003 - Annals of Pure and Applied Logic 119 (1-3):61-83.
    An axiomatic development of the theory of apartness and nearness of a point and a set is introduced as a framework for constructive topology. Various notions of continuity of mappings between apartness spaces are compared; the constructive independence of one of the axioms from the others is demonstrated; and the product apartness structure is defined and analysed.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Apartness spaces as a framework for constructive topology.Douglas Bridges & Luminiţa Vîţă - 2003 - Annals of Pure and Applied Logic 119 (1-3):61-83.
    An axiomatic development of the theory of apartness and nearness of a point and a set is introduced as a framework for constructive topology. Various notions of continuity of mappings between apartness spaces are compared; the constructive independence of one of the axioms from the others is demonstrated; and the product apartness structure is defined and analysed.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Glueing continuous functions constructively.Douglas S. Bridges & Iris Loeb - 2010 - Archive for Mathematical Logic 49 (5):603-616.
    The glueing of (sequentially, pointwise, or uniformly) continuous functions that coincide on the intersection of their closed domains is examined in the light of Bishop-style constructive analysis. This requires us to pay attention to the way that the two domains intersect.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructing local optima on a compact interval.Douglas S. Bridges - 2007 - Archive for Mathematical Logic 46 (2):149-154.
    The existence of either a maximum or a minimum for a uniformly continuous mapping f of a compact interval into ${\mathbb{R}}$ is established constructively under the hypotheses that f′ is sequentially continuous and f has at most one critical point.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Arguments for the Continuity Principle.Mark van Atten & Dirk Van Dalen - 2002 - Bulletin of Symbolic Logic 8 (3):329 - 347.
    Download  
     
    Export citation  
     
    Bookmark   2 citations