Switch to: References

Add citations

You must login to add citations.
  1. Necessary use of [image] induction in a reversal.Itay Neeman - 2011 - Journal of Symbolic Logic 76 (2):561 - 574.
    Jullien's indecomposability theorem (INDEC) states that if a scattered countable linear order is indecomposable, then it is either indecomposable to the left, or indecomposable to the right. The theorem was shown by Montalbán to be a theorem of hyperarithmetic analysis, and then, in the base system RCA₀ plus ${\mathrm{\Sigma }}_{1}^{1}\text{\hspace{0.17em}}$ induction, it was shown by Neeman to have strength strictly between weak ${\mathrm{\Sigma }}_{1}^{1}$ choice and ${\mathrm{\Delta }}_{1}^{1}$ comprehension. We prove in this paper that ${\mathrm{\Sigma }}_{1}^{1}$ induction is needed for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Strength of an Axiom of Finite Choice for Branches in Trees.G. O. H. Jun Le - 2023 - Journal of Symbolic Logic 88 (4):1367-1386.
    In their logical analysis of theorems about disjoint rays in graphs, Barnes, Shore, and the author (hereafter BGS) introduced a weak choice scheme in second-order arithmetic, called the $\Sigma ^1_1$ axiom of finite choice (hereafter finite choice). This is a special case of the $\Sigma ^1_1$ axiom of choice ( $\Sigma ^1_1\text {-}\mathsf {AC}_0$ ) introduced by Kreisel. BGS showed that $\Sigma ^1_1\text {-}\mathsf {AC}_0$ suffices for proving many of the aforementioned theorems in graph theory. While it is not known (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
    This paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Almost Theorems of Hyperarithmetic Analysis.Richard A. Shore - forthcoming - Journal of Symbolic Logic:1-33.
    Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR $_{0}$ (and so $\Pi _{1}^{1}$ -CA $_{0}$ or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theorems of hyperarithmetic analysis and almost theorems of hyperarithmetic analysis.James S. Barnes, Jun le Goh & Richard A. Shore - 2022 - Bulletin of Symbolic Logic 28 (1):133-149.
    Theorems of hyperarithmetic analysis occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed iterations of the Turing jump but below ATR $_{0}$. There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They (...)
    Download  
     
    Export citation  
     
    Bookmark