Switch to: References

Add citations

You must login to add citations.
  1. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • How quantum mechanics with deterministic collapse localizes macroscopic objects.Arthur Jabs - manuscript
    Why microscopic objects exhibit wave properties (are delocalized), but macroscopic do not (are localized)? Traditional quantum mechanics attributes wave properties to all objects. When complemented with a deterministic collapse model (Quantum Stud.: Math. Found. 3, 279 (2016)) quantum mechanics can dissolve the discrepancy. Collapse in this model means contraction and occurs when the object gets in touch with other objects and satisfies a certain criterion. One single collapse usually does not suffice for localization. But the object rapidly gets in touch (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Schrödinger's cat in a realist quantum mechanics.Arthur Jabs - 2016 - arXiv.Org.
    There is no paradox with Schrödinger’s cat in a realist interpretation. In particular, a closer look at the temporal aspect shows that the two macroscopic wave functions (alive and dead) of Schrödinger’s cat are not to be compared with two superposed parts of a microscopic quantum wave function.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unitary-Only Quantum Theory Cannot Consistently Describe the Use of Itself: On the Frauchiger–Renner Paradox.R. E. Kastner - 2020 - Foundations of Physics 50 (5):441-456.
    The Frauchiger–Renner Paradox is an extension of paradoxes based on the “Problem of Measurement,” such as Schrödinger’s Cat and Wigner’s Friend. All these paradoxes stem from assuming that quantum theory has only unitary physical dynamics, and the attendant ambiguity about what counts as a ‘measurement’—i.e., the inability to account for the observation of determinate measurement outcomes from within the theory itself. This paper discusses a basic inconsistency arising in the FR scenario at a much earlier point than the derived contradiction: (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations