Switch to: References

Citations of:

Quantum Information: An overview

New York, NY, USA: Springer (2007)

Add citations

You must login to add citations.
  1. Logical information theory: new logical foundations for information theory.David Ellerman - 2017 - Logic Journal of the IGPL 25 (5):806-835.
    There is a new theory of information based on logic. The definition of Shannon entropy as well as the notions on joint, conditional, and mutual entropy as defined by Shannon can all be derived by a uniform transformation from the corresponding formulas of logical information theory. Information is first defined in terms of sets of distinctions without using any probability measure. When a probability measure is introduced, the logical entropies are simply the values of the probability measure on the sets (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Classical and Quantum Logical Entropy.David Ellerman - manuscript
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized counting measure on elements of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum postulate vs. quantum nonlocality: on the role of the Planck constant in Bell’s argument.Andrei Khrennikov - 2021 - Foundations of Physics 51 (1):1-12.
    We present a quantum mechanical analysis of Bell’s approach to quantum foundations based on his hidden-variable model. We claim and try to justify that the Bell model contradicts to the Heinsenberg’s uncertainty and Bohr’s complementarity principles. The aim of this note is to point to the physical seed of the aforementioned principles. This is the Bohr’s quantum postulate: the existence of indivisible quantum of action given by the Planck constant h. By contradicting these basic principles of QM, Bell’s model implies (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Possibility to Combine the Order Effect with Sequential Reproducibility for Quantum Measurements.Irina Basieva & Andrei Khrennikov - 2015 - Foundations of Physics 45 (10):1379-1393.
    In this paper we study the problem of a possibility to use quantum observables to describe a possible combination of the order effect with sequential reproducibility for quantum measurements. By the order effect we mean a dependence of probability distributions on the order of measurements. We consider two types of the sequential reproducibility: adjacent reproducibility ) and separated reproducibility). The first one is reproducibility with probability 1 of a result of measurement of some observable A measured twice, one A measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Theory: a Foundational Approach.Charis Anastopoulos - 2023 - Cambridge: Cambridge University Press.
    This is a textbook on quantum mechanics. It is addressed to graduates and advanced undergraduates. The book presents quantum theory as a logically coherent system, placing stronger emphasis on the theory' s probabilistic structure and on the role of symmetries. It makes students aware of foundational problems from the very beginning, but at the same time, it urges them to adopt a pragmatic attitude towards the quantum formalism. The book consists of five parts. Part I is a review of classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Cognitive Triad: Semantic Geometry of Context Representation.Ilya A. Surov - 2020 - Foundations of Science 26 (4):947-975.
    The paper describes an algorithm for semantic representation of behavioral contexts relative to a dichotomic decision alternative. The contexts are represented as quantum qubit states in two-dimensional Hilbert space visualized as points on the Bloch sphere. The azimuthal coordinate of this sphere functions as a one-dimensional semantic space in which the contexts are accommodated according to their subjective relevance to the considered uncertainty. The contexts are processed in triples defined by knowledge of a subject about a binary situational factor. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Chemistry, context and the objects of thought.Robert Prentner - 2017 - Foundations of Chemistry 19 (1):29-41.
    In this paper we wish to raise the following question: which conceptual obstacles need to be overcome to arrive at a scientific and theoretical understanding of the mind? In the course of this examination, we shall encounter methodological and explanatory challenges and discuss them from the point of view of the philosophy of chemistry and quantum mechanics. This will eventually lead us to a discussion of emergence and metaphysics, thereby focusing on the status of objects. The question remains whether this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Natural Code of Subjective Experience.Ilya A. Surov - 2022 - Biosemiotics 15 (1):109-139.
    The paper introduces mathematical encoding for subjective experience and meaning in natural cognition. The code is based on a quantum-theoretic qubit structure supplementing classical bit with circular dimension, functioning as a process-causal template for representation of contexts relative to the basis decision. The qubit state space is demarcated in categories of emotional experience of animals and humans. Features of the resulting spherical map align with major theoreties in cognitive and emotion science, modeling of natural language, and semiotics, suggesting several generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Versus Classical Entanglement: Eliminating the Issue of Quantum Nonlocality.Andrei Khrennikov - 2020 - Foundations of Physics 50 (12):1762-1780.
    We analyze the interrelation of quantum and classical entanglement. The latter notion is widely used in classical optic simulation of some quantum-like features of light. We criticize the common interpretation that “quantum nonlocality” is the basic factor differing quantum and classical realizations of entanglement. Instead, we point to the breakthrough Grangier et al. experiment on coincidence detection which was done in 1986 and played the crucial role in rejection of classical field models in favor of quantum mechanics. Classical entanglement sources (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation