Switch to: References

Citations of:

Proof and the evolution of mathematics

Synthese 111 (2):133-146 (1997)

Add citations

You must login to add citations.
  1. Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method.Carlo Cellucci - 2013 - Dordrecht, Netherland: Springer.
    This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • A Critique of a Formalist-Mechanist Version of the Justification of Arguments in Mathematicians' Proof Practices.Yehuda Rav - 2007 - Philosophia Mathematica 15 (3):291-320.
    In a recent article, Azzouni has argued in favor of a version of formalism according to which ordinary mathematical proofs indicate mechanically checkable derivations. This is taken to account for the quasi-universal agreement among mathematicians on the validity of their proofs. Here, the author subjects these claims to a critical examination, recalls the technical details about formalization and mechanical checking of proofs, and illustrates the main argument with aanalysis of examples. In the author's view, much of mathematical reasoning presents genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Church's thesis: Prelude to a proof.Janet Folina - 1998 - Philosophia Mathematica 6 (3):302-323.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Origins of Eternal Truth in Modern Mathematics: Hilbert to Bourbaki and Beyond.Leo Corry - 1997 - Science in Context 10 (2):253-296.
    The ArgumentThe belief in the existence of eternal mathematical truth has been part of this science throughout history. Bourbaki, however, introduced an interesting, and rather innovative twist to it, beginning in the mid-1930s. This group of mathematicians advanced the view that mathematics is a science dealing with structures, and that it attains its results through a systematic application of the modern axiomatic method. Like many other mathematicians, past and contemporary, Bourbaki understood the historical development of mathematics as a series of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • .[author unknown] - unknown
    Download  
     
    Export citation  
     
    Bookmark