Switch to: References

Add citations

You must login to add citations.
  1. A Propositional Cirquent Calculus for Computability Logic.Giorgi Japaridze - 2024 - Journal of Logic, Language and Information 33 (4):363-389.
    Cirquent calculus is a proof system with inherent ability to account for sharing subcomponents in logical expressions. Within its framework, this article constructs an axiomatization $$\text{ CL18 }$$ CL18 of the basic propositional fragment of computability logic—the game-semantically conceived logic of computational resources and tasks. The nonlogical atoms of this fragment represent arbitrary so called static games, and the connectives of its logical vocabulary are negation and the parallel and choice versions of conjunction and disjunction. The main technical result of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Elementary-base cirquent calculus II: Choice quantifiers.Giorgi Japaridze - forthcoming - Logic Journal of the IGPL.
    Cirquent calculus is a novel proof theory permitting component-sharing between logical expressions. Using it, the predecessor article ‘Elementary-base cirquent calculus I: Parallel and choice connectives’ built the sound and complete axiomatization $\textbf{CL16}$ of a propositional fragment of computability logic. The atoms of the language of $\textbf{CL16}$ represent elementary, i.e. moveless, games and the logical vocabulary consists of negation, parallel connectives and choice connectives. The present paper constructs the first-order version $\textbf{CL17}$ of $\textbf{CL16}$, also enjoying soundness and completeness. The language of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Parallel versus Branching Recurrences in Computability Logic.Wenyan Xu & Sanyang Liu - 2013 - Notre Dame Journal of Formal Logic 54 (1):61-78.
    This paper shows that the basic logic induced by the parallel recurrence $\hspace {-2pt}\mbox {\raisebox {-0.01pt}{\@setfontsize \small {7}{8}$\wedge$}\hspace {-3.55pt}\raisebox {4.5pt}{\tiny $\mid$}\hspace {2pt}}$ of computability logic (i.e., the one in the signature $\{\neg,$\wedge$,\vee,\hspace {-2pt}\mbox {\raisebox {-0.01pt}{\@setfontsize \small {7}{8}$\wedge$}\hspace {-3.55pt}\raisebox {4.5pt}{\tiny $\mid$}\hspace {2pt}},\hspace {-2pt}\mbox {\raisebox {0.12cm}{\@setfontsize \small {7}{8}$\vee$}\hspace {-3.6pt}\raisebox {0.02cm}{\tiny $\mid$}\hspace {2pt}}\}$ ) is a proper superset of the basic logic induced by the branching recurrence $\mbox {\raisebox {-0.05cm}{$\circ$}\hspace {-0.11cm}\raisebox {3.1pt}{\tiny $\mid$}\hspace {2pt}}$ (i.e., the one in the signature $\{\neg,$\wedge$,\vee,\mbox {\raisebox {-0.05cm}{$\circ$}\hspace {-0.11cm}\raisebox (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations