Switch to: References

Add citations

You must login to add citations.
  1. Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Problems in Singular Cardinals Combinatorics.Matthew Foreman - 2005 - Notre Dame Journal of Formal Logic 46 (3):309-322.
    This paper attempts to present and organize several problems in the theory of Singular Cardinals. The most famous problems in the area (bounds for the ℶ-function at singular cardinals) are well known to all mathematicians with even a rudimentary interest in set theory. However, it is less well known that the combinatorics of singular cardinals is a thriving area with results and problems that do not depend on a solution of the Singular Cardinals Hypothesis. We present here an annotated collection (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Objectivity over objects: A case study in theory formation.Kai Hauser - 2001 - Synthese 128 (3):245 - 285.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Is Cantor's continuum problem inherently vague?Kai Hauser - 2002 - Philosophia Mathematica 10 (3):257-285.
    I examine various claims to the effect that Cantor's Continuum Hypothesis and other problems of higher set theory are ill-posed questions. The analysis takes into account the viability of the underlying philosophical views and recent mathematical developments.
    Download  
     
    Export citation  
     
    Bookmark   11 citations