Switch to: References

Add citations

You must login to add citations.
  1. Stage Comparison, Fixed Points, and Least Fixed Points in Kripke–Platek Environments.Gerhard Jäger - 2022 - Notre Dame Journal of Formal Logic 63 (4):443-461.
    Let T be Kripke–Platek set theory with infinity extended by the axiom (Beta) plus the schema that claims that every set-bounded Σ-definable monotone operator from the collection of all sets to Pow(a) for some set a has a fixed point. Then T proves that every such operator has a least fixed point. This result is obtained by following the proof of an analogous result for von Neumann–Bernays–Gödel set theory in an earlier work by Sato, with some minor modifications.
    Download  
     
    Export citation  
     
    Bookmark  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some Set-Theoretic Reduction Principles.Michael Bärtschi & Gerhard Jäger - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 425-442.
    In this article we study several reduction principles in the context of Simpson’s set theory ATR0S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ATR_{0}^{S}$$\end{document} and Kripke-Platek set theory KP (with infinity). Since ATR0S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ATR_{0}^{S}$$\end{document} is the set-theoretic version of ATR0 there is a direct link to second order arithmetic and the results for reductions over ATR0S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ATR_{0}^{S}$$\end{document} are as expected and more or less (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations