Switch to: References

Add citations

You must login to add citations.
  1. Full and hat inductive definitions are equivalent in NBG.Kentaro Sato - 2015 - Archive for Mathematical Logic 54 (1-2):75-112.
    A new research project has, quite recently, been launched to clarify how different, from systems in second order number theory extending ACA0, those in second order set theory extending NBG are. In this article, we establish the equivalence between Δ01-LFP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^1_0\mbox{\bf-LFP}}$$\end{document} and Δ01-FP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^1_0\mbox{\bf-FP}}$$\end{document}, which assert the existence of a least and of a fixed point, respectively, for positive elementary operators. Our proof also shows (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A few more dissimilarities between second-order arithmetic and set theory.Kentaro Fujimoto - 2022 - Archive for Mathematical Logic 62 (1):147-206.
    Second-order arithmetic and class theory are second-order theories of mathematical subjects of foundational importance, namely, arithmetic and set theory. Despite the similarity in appearance, there turned out to be significant mathematical dissimilarities between them. The present paper studies various principles in class theory, from such a comparative perspective between second-order arithmetic and class theory, and presents a few new dissimilarities between them.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Operational closure and stability.Gerhard Jäger - 2013 - Annals of Pure and Applied Logic 164 (7-8):813-821.
    In this article we introduce and study the notion of operational closure: a transitive set d is called operationally closed iff it contains all constants of OST and any operation f∈d applied to an element a∈d yields an element fa∈d, provided that f applied to a has a value at all. We will show that there is a direct relationship between operational closure and stability in the sense that operationally closed sets behave like Σ1 substructures of the universe. This leads (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Operational set theory and small large cardinals.Solomon Feferman with with R. L. Vaught - manuscript
    “Small” large cardinal notions in the language of ZFC are those large cardinal notions that are consistent with V = L. Besides their original formulation in classical set theory, we have a variety of analogue notions in systems of admissible set theory, admissible recursion theory, constructive set theory, constructive type theory, explicit mathematics and recursive ordinal notations (as used in proof theory). On the face of it, it is surprising that such distinctively set-theoretical notions have analogues in such disaparate and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Extending constructive operational set theory by impredicative principles.Andrea Cantini - 2011 - Mathematical Logic Quarterly 57 (3):299-322.
    We study constructive set theories, which deal with operations applying both to sets and operations themselves. Our starting point is a fully explicit, finitely axiomatized system ESTE of constructive sets and operations, which was shown in 10 to be as strong as PA. In this paper we consider extensions with operations, which internally represent description operators, unbounded set quantifiers and local fixed point operators. We investigate the proof theoretic strength of the resulting systems, which turn out to be impredicative . (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Relativizing operational set theory.Gerhard Jäger - 2016 - Bulletin of Symbolic Logic 22 (3):332-352.
    We introduce a way of relativizing operational set theory that also takes care of application. After presenting the basic approach and proving some essential properties of this new form of relativization we turn to the notion of relativized regularity and to the system OST that extends OST by a limit axiom claiming that any set is element of a relativized regular set. Finally we show that OST is proof-theoretically equivalent to the well-known theory KPi for a recursively inaccessible universe.
    Download  
     
    Export citation  
     
    Bookmark  
  • Classes and truths in set theory.Kentaro Fujimoto - 2012 - Annals of Pure and Applied Logic 163 (11):1484-1523.
    This article studies three most basic systems of truth as well as their subsystems over set theory ZF possibly with AC or the axiom of global choice GC, and then correlates them with subsystems of Morse–Kelley class theory MK. The article aims at making an initial step towards the axiomatic study of truth in set theory in connection with class theory. Some new results on the side of class theory, such as conservativity, forcing and some forms of the reflection principle, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π 1 -equivalent to KP.Kentaro Sato & Rico Zumbrunnen - 2015 - Annals of Pure and Applied Logic 166 (2):121-186.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Explicit mathematics and operational set theory: Some ontological comparisons.Gerhard Jäger & Rico Zumbrunnen - 2014 - Bulletin of Symbolic Logic 20 (3):275-292.
    We discuss several ontological properties of explicit mathematics and operational set theory: global choice, decidable classes, totality and extensionality of operations, function spaces, class and set formation via formulas that contain the definedness predicate and applications.
    Download  
     
    Export citation  
     
    Bookmark   2 citations