Switch to: References

Add citations

You must login to add citations.
  1. Essential Kurepa trees versus essential Jech–Kunen trees.Renling Jin & Saharon Shelah - 1994 - Annals of Pure and Applied Logic 69 (1):107-131.
    By an ω1-tree we mean a tree of cardinality ω1 and height ω1. An ω1-tree is called a Kurepa tree if all its levels are countable and it has more than ω1 branches. An ω1-tree is called a Jech–Kunen tree if it has κ branches for some κ strictly between ω1 and 2ω1. A Kurepa tree is called an essential Kurepa tree if it contains no Jech–Kunen subtrees. A Jech–Kunen tree is called an essential Jech–Kunen tree if it is no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can a small forcing create Kurepa trees.Renling Jin & Saharon Shelah - 1997 - Annals of Pure and Applied Logic 85 (1):47-68.
    In this paper we probe the possibilities of creating a Kurepa tree in a generic extension of a ground model of CH plus no Kurepa trees by an ω1-preserving forcing notion of size at most ω1. In Section 1 we show that in the Lévy model obtained by collapsing all cardinals between ω1 and a strongly inaccessible cardinal by forcing with a countable support Lévy collapsing order, many ω1-preserving forcing notions of size at most ω1 including all ω-proper forcing notions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations