Switch to: References

Add citations

You must login to add citations.
  1. Precipitous Towers of Normal Filters.Douglas R. Burke - 1997 - Journal of Symbolic Logic 62 (3):741-754.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Precipitous Ideals on Singular Cardinals.C. A. Johnson - 1986 - Mathematical Logic Quarterly 32 (25-30):461-465.
    Download  
     
    Export citation  
     
    Bookmark  
  • More on the pressing down game.Jakob Kellner & Saharon Shelah - 2011 - Archive for Mathematical Logic 50 (3-4):477-501.
    We investigate the pressing down game and its relation to the Banach Mazur game. In particular we show: consistently, there is a nowhere precipitous normal ideal I on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_2}$$\end{document} such that player nonempty wins the pressing down game of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} on I even if player empty starts.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Winning the Pressing down Game but Not Banach-Mazur.Jakob Kellner, Matti Pauna & Saharon Shelah - 2007 - Journal of Symbolic Logic 72 (4):1323 - 1335.
    Let S be the set of those α ∈ ω₂ that have cofinality ω₁. It is consistent relative to a measurable that the nonempty player wins the pressing down game of length ω₁, but not the Banach-Mazur game of length ω + 1 (both games starting with S).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On almost precipitous ideals.Asaf Ferber & Moti Gitik - 2010 - Archive for Mathematical Logic 49 (3):301-328.
    With less than 0# two generic extensions ofL are identified: one in which ${\aleph_1}$ , and the other ${\aleph_2}$ , is almost precipitous. This improves the consistency strength upper bound of almost precipitousness obtained in Gitik M, Magidor M (On partialy wellfounded generic ultrapowers, in Pillars of Computer Science, 2010), and answers some questions raised there. Also, main results of Gitik (On normal precipitous ideals, 2010), are generalized—assumptions on precipitousness are replaced by those on ∞-semi precipitousness. As an application it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations