Switch to: References

Add citations

You must login to add citations.
  1. Trajectory Interpretation of Correspondence Principle: Solution of Nodal Issue.Ciann-Dong Yang & Shiang-Yi Han - 2020 - Foundations of Physics 50 (9):960-976.
    The correspondence principle states that the quantum system will approach the classical system in high quantum numbers. Indeed, the average of the quantum probability density distribution reflects a classical-like distribution. However, the probability of finding a particle at the node of the wave function is zero. This condition is recognized as the nodal issue. In this paper, we propose a solution for this issue by means of complex quantum random trajectories, which are obtained by solving the stochastic differential equation derived (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interfering Quantum Trajectories Without Which-Way Information.Kiran Mathew & Moncy V. John - 2017 - Foundations of Physics 47 (7):873-886.
    Quantum trajectory-based descriptions of interference between two coherent stationary waves in a double-slit experiment are presented, as given by the de Broglie–Bohm and modified de Broglie–Bohm formulations of quantum mechanics. In the dBB trajectory representation, interference between two spreading wave packets can be shown also as resulting from motion of particles. But a trajectory explanation for interference between stationary states is so far not available in this scheme. We show that both the dBB and MdBB trajectories are capable of producing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation