Switch to: References

Add citations

You must login to add citations.
  1. Guessing models and generalized Laver diamond.Matteo Viale - 2012 - Annals of Pure and Applied Logic 163 (11):1660-1678.
    We analyze the notion of guessing model, a way to assign combinatorial properties to arbitrary regular cardinals. Guessing models can be used, in combination with inaccessibility, to characterize various large cardinal axioms, ranging from supercompactness to rank-to-rank embeddings. The majority of these large cardinal properties can be defined in terms of suitable elementary embeddings j:Vγ→Vλ. One key observation is that such embeddings are uniquely determined by the image structures j[Vγ]≺Vλ. These structures will be the prototypes guessing models. We shall show, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Some applications of mixed support iterations.John Krueger - 2009 - Annals of Pure and Applied Logic 158 (1-2):40-57.
    We give some applications of mixed support forcing iterations to the topics of disjoint stationary sequences and internally approachable sets. In the first half of the paper we study the combinatorial content of the idea of a disjoint stationary sequence, including its relation to adding clubs by forcing, the approachability ideal, canonical structure, the proper forcing axiom, and properties related to internal approachability. In the second half of the paper we present some consistency results related to these ideas. We construct (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Forcing axioms, approachability, and stationary set reflection.Sean D. Cox - 2021 - Journal of Symbolic Logic 86 (2):499-530.
    We prove a variety of theorems about stationary set reflection and concepts related to internal approachability. We prove that an implication of Fuchino–Usuba relating stationary reflection to a version of Strong Chang’s Conjecture cannot be reversed; strengthen and simplify some results of Krueger about forcing axioms and approachability; and prove that some other related results of Krueger are sharp. We also adapt some ideas of Woodin to simplify and unify many arguments in the literature involving preservation of forcing axioms.
    Download  
     
    Export citation  
     
    Bookmark   1 citation