Switch to: References

Add citations

You must login to add citations.
  1. Topologizing Interpretable Groups in p-Adically Closed Fields.Will Johnson - 2023 - Notre Dame Journal of Formal Logic 64 (4):571-609.
    We consider interpretable topological spaces and topological groups in a p-adically closed field K. We identify a special class of “admissible topologies” with topological tameness properties like generic continuity, similar to the topology on definable subsets of Kn. We show that every interpretable set has at least one admissible topology, and that every interpretable group has a unique admissible group topology. We then consider definable compactness (in the sense of Fornasiero) on interpretable groups. We show that an interpretable group is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • One-dimensional subgroups and connected components in non-Abelian P-adic definable groups.William Johnson & Ningyuan Yao - forthcoming - Journal of Symbolic Logic:1-19.
    We generalize two of our previous results on abelian definable groups in p-adically closed fields [12, 13] to the non-abelian case. First, we show that if G is a definable group that is not definably compact, then G has a one-dimensional definable subgroup which is not definably compact. This is a p-adic analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if G is a group definable over the standard model $\mathbb {Q}_p$, then $G^0 = G^{00}$. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On non-compact p-adic definable groups.Will Johnson & Ningyuan Yao - 2022 - Journal of Symbolic Logic 87 (1):188-213.
    In [16], Peterzil and Steinhorn proved that if a group G definable in an o-minimal structure is not definably compact, then G contains a definable torsion-free subgroup of dimension 1. We prove here a p-adic analogue of the Peterzil–Steinhorn theorem, in the special case of abelian groups. Let G be an abelian group definable in a p-adically closed field M. If G is not definably compact then there is a definable subgroup H of dimension 1 which is not definably compact. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A note on fsg$\text{fsg}$ groups in p‐adically closed fields.Will Johnson - 2023 - Mathematical Logic Quarterly 69 (1):50-57.
    Let G be a definable group in a p-adically closed field M. We show that G has finitely satisfiable generics ( fsg $\text{fsg}$ ) if and only if G is definably compact. The case M = Q p $M = \mathbb {Q}_p$ was previously proved by Onshuus and Pillay.
    Download  
     
    Export citation  
     
    Bookmark   4 citations