Switch to: References

Add citations

You must login to add citations.
  1. Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Ramified Frege Arithmetic.Richard G. Heck - 2011 - Journal of Philosophical Logic 40 (6):715-735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Amending Frege’s Grundgesetze der Arithmetik.Fernando Ferreira - 2005 - Synthese 147 (1):3-19.
    Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is, except for minor differences, second-order logic together with an abstraction operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of reducibility for concepts true of only finitely many individuals is still consistent, and that elementary Peano arithmetic (and more) is interpretable in this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Interpretability in Robinson's Q.Fernando Ferreira & Gilda Ferreira - 2013 - Bulletin of Symbolic Logic 19 (3):289-317.
    Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is animpassable barrierin the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted inbut also what cannot be so (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Russell's 1925 logic.A. P. Hazen & J. M. Davoren - 2000 - Australasian Journal of Philosophy 78 (4):534 – 556.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophy, Drama and Literature.Rick Benitez - 2010 - In Graham Robert Oppy, Nick Trakakis, Lynda Burns, Steven Gardner & Fiona Leigh (eds.), A companion to philosophy in Australia & New Zealand. Clayton, Victoria, Australia: Monash University Publishing. pp. 371-372.
    Philosophy and Literature is an internationally renowned refereed journal founded by Denis Dutton at the University of Canterbury, Christchurch. It is now published by the Johns Hopkins University Press. Since its inception in 1976, Philosophy and Literature has been concerned with the relation between literary and philosophical studies, publishing articles on the philosophical interpretation of literature as well as the literary treatment of philosophy. Philosophy and Literature has sometimes been regarded as iconoclastic, in the sense that it repudiates academic pretensions, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Evidence and the hierarchy of mathematical theories.Charles Parsons - unknown
    It is a well-known fact of mathematical logic, by now developed in considerable detail, that formalized mathematical theories can be ordered by relative interpretability, and the "strength" of a theory is indicated by where it stands in this ordering. Mutual interpretability is an equivalence relation, and what I call an ordering is a partial ordering modulo this equivalence. Of the theories that have been studied, the natural theories belong to a linearly ordered subset of this ordering.
    Download  
     
    Export citation  
     
    Bookmark