Switch to: References

Add citations

You must login to add citations.
  1. Dp-finite fields I(A): The infinitesimals.Will Johnson - 2021 - Annals of Pure and Applied Logic 172 (6):102947.
    We prove that NIP valued fields of positive characteristic are henselian, and we begin to generalize the known results on dp-minimal fields to dp-finite fields. On any unstable dp-finite field K, we define a type-definable group of “infinitesimals,” corresponding to a canonical group topology on (K, +). We reduce the classification of positive characteristic dp-finite fields to the construction of non-trivial Aut(K/A)-invariant valuation rings.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Topological fields with a generic derivation.Pablo Cubides Kovacsics & Françoise Point - 2023 - Annals of Pure and Applied Logic 174 (3):103211.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tame Topology over dp-Minimal Structures.Pierre Simon & Erik Walsberg - 2019 - Notre Dame Journal of Formal Logic 60 (1):61-76.
    In this article, we develop tame topology over dp-minimal structures equipped with definable uniformities satisfying certain assumptions. Our assumptions are enough to ensure that definable sets are tame: there is a good notion of dimension on definable sets, definable functions are almost everywhere continuous, and definable sets are finite unions of graphs of definable continuous “multivalued functions.” This generalizes known statements about weakly o-minimal, C-minimal, and P-minimal theories.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Definability of Henselian Valuations by Conditions on the Value Group.Lothar Sebastian Krapp, Salma Kuhlmann & Moritz Link - 2023 - Journal of Symbolic Logic 88 (3):1064-1082.
    Given a Henselian valuation, we study its definability (with and without parameters) by examining conditions on the value group. We show that any Henselian valuation whose value group is not closed in its divisible hull is definable in the language of rings, using one parameter. Thereby we strengthen known definability results. Moreover, we show that in this case, one parameter is optimal in the sense that one cannot obtain definability without parameters. To this end, we present a construction method for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strongly NIP almost real closed fields.Lothar Sebastian Krapp, Salma Kuhlmann & Gabriel Lehéricy - 2021 - Mathematical Logic Quarterly 67 (3):321-328.
    The following conjecture is due to Shelah–Hasson: Any infinite strongly NIP field is either real closed, algebraically closed, or admits a non‐trivial definable henselian valuation, in the language of rings. We specialise this conjecture to ordered fields in the language of ordered rings, which leads towards a systematic study of the class of strongly NIP almost real closed fields. As a result, we obtain a complete characterisation of this class.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A conjectural classification of strongly dependent fields.Yatir Halevi, Assaf Hasson & Franziska Jahnke - 2019 - Bulletin of Symbolic Logic 25 (2):182-195.
    We survey the history of Shelah’s conjecture on strongly dependent fields, give an equivalent formulation in terms of a classification of strongly dependent fields and prove that the conjecture implies that every strongly dependent field has finite dp-rank.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Definable valuations induced by multiplicative subgroups and NIP fields.Katharina Dupont, Assaf Hasson & Salma Kuhlmann - 2019 - Archive for Mathematical Logic 58 (7-8):819-839.
    We study the algebraic implications of the non-independence property and variants thereof on infinite fields, motivated by the conjecture that all such fields which are neither real closed nor separably closed admit a henselian valuation. Our results mainly focus on Hahn fields and build up on Will Johnson’s “The canonical topology on dp-minimal fields” :1850007, 2018).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Definable V-topologies, Henselianity and NIP.Yatir Halevi, Assaf Hasson & Franziska Jahnke - 2019 - Journal of Mathematical Logic 20 (2):2050008.
    We initiate the study of definable [Formula: see text]-topologies and show that there is at most one such [Formula: see text]-topology on a [Formula: see text]-henselian NIP field. Equivalently, we show that if [Formula: see text] is a bi-valued NIP field with [Formula: see text] henselian, then [Formula: see text] and [Formula: see text] are comparable. As a consequence, Shelah’s conjecture for NIP fields implies the henselianity conjecture for NIP fields. Furthermore, the latter conjecture is proved for any field admitting (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Abelian groups definable in P-adically closed fields.Will Johnson & Y. A. O. Ningyuan - forthcoming - Journal of Symbolic Logic:1-22.
    Recall that a group G has finitely satisfiable generics (fsg) or definable f-generics (dfg) if there is a global type p on G and a small model $M_0$ such that every left translate of p is finitely satisfiable in $M_0$ or definable over $M_0$, respectively. We show that any abelian group definable in a p-adically closed field is an extension of a definably compact fsg definable group by a dfg definable group. We discuss an approach which might prove a similar (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Henselian expansions of NIP fields.Franziska Jahnke - 2023 - Journal of Mathematical Logic 24 (2).
    Let K be an NIP field and let v be a Henselian valuation on K. We ask whether [Formula: see text] is NIP as a valued field. By a result of Shelah, we know that if v is externally definable, then [Formula: see text] is NIP. Using the definability of the canonical p-Henselian valuation, we show that whenever the residue field of v is not separably closed, then v is externally definable. In the case of separably closed residue field, we (...)
    Download  
     
    Export citation  
     
    Bookmark