Switch to: References

Add citations

You must login to add citations.
  1. Bisimulations and bisimulation games between Verbrugge models.Sebastijan Horvat, Tin Perkov & Mladen Vuković - 2023 - Mathematical Logic Quarterly 69 (2):231-243.
    Interpretability logic is a modal formalization of relative interpretability between first‐order arithmetical theories. Verbrugge semantics is a generalization of Veltman semantics, the basic semantics for interpretability logic. Bisimulation is the basic equivalence between models for modal logic. We study various notions of bisimulation between Verbrugge models and develop a new one, which we call w‐bisimulation. We show that the new notion, while keeping the basic property that bisimilarity implies modal equivalence, is weak enough to allow the converse to hold in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal Matters for Interpretability Logics.Evan Goris & Joost Joosten - 2008 - Logic Journal of the IGPL 16 (4):371-412.
    This paper is the first in a series of three related papers on modal methods in interpretability logics and applications. In this first paper the fundaments are laid for later results. These fundaments consist of a thorough treatment of a construction method to obtain modal models. This construction method is used to reprove some known results in the area of interpretability like the modal completeness of the logic IL. Next, the method is applied to obtain new results: the modal completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Self provers and Σ1 sentences.Evan Goris & Joost Joosten - 2012 - Logic Journal of the IGPL 20 (1):1-21.
    This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Pairs, sets and sequences in first-order theories.Albert Visser - 2008 - Archive for Mathematical Logic 47 (4):299-326.
    In this paper we study the idea of theories with containers, like sets, pairs, sequences. We provide a modest framework to study such theories. We prove two concrete results. First, we show that first-order theories of finite signature that have functional non-surjective ordered pairing are definitionally equivalent to extensions in the same language of the basic theory of non-surjective ordered pairing. Second, we show that a first-order theory of finite signature is sequential (is a theory of sequences) iff it is (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)The Closed Fragment of the Interpretability Logic of PRA with a Constant for $\mathrm{I}\Sigma_1$.Joost J. Joosten - 2005 - Notre Dame Journal of Formal Logic 46 (2):127-146.
    In this paper we carry out a comparative study of $\mathrm{I}\Sigma_1$ and PRA. We will in a sense fully determine what these theories have to say about each other in terms of provability and interpretability. Our study will result in two arithmetically complete modal logics with simple universal models.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structuralism, model theory and reduction.Karl-Georg Niebergall - 2002 - Synthese 130 (1):135 - 162.
    In this paper, the (possible) role of model theory forstructuralism and structuralist definitions of ``reduction'' arediscussed. Whereas it is somewhat undecisive with respect tothe first point – discussing some pro's and con's ofthe model theoretic approach when compared with a syntacticand a structuralist one – it emphasizes that severalstructuralist definitions of ``reducibility'' do not providegenerally acceptable explications of ``reducibility''. This claimrests on some mathematical results proved in this paper.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Provability and Interpretability Logics with Restricted Realizations.Thomas F. Icard & Joost J. Joosten - 2012 - Notre Dame Journal of Formal Logic 53 (2):133-154.
    The provability logic of a theory $T$ is the set of modal formulas, which under any arithmetical realization are provable in $T$. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set $\Gamma$. We make an analogous modification for interpretability logics. We first study provability logics with restricted realizations and show that for various natural candidates of $T$ and restriction set $\Gamma$, the result is the logic of linear frames. However, for the theory Primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Transductions in arithmetic.Albert Visser - 2016 - Annals of Pure and Applied Logic 167 (3):211-234.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Growing Commas. A Study of Sequentiality and Concatenation.Albert Visser - 2009 - Notre Dame Journal of Formal Logic 50 (1):61-85.
    In his paper "Undecidability without arithmetization," Andrzej Grzegorczyk introduces a theory of concatenation $\mathsf{TC}$. We show that pairing is not definable in $\mathsf{TC}$. We determine a reasonable extension of $\mathsf{TC}$ that is sequential, that is, has a good sequence coding.
    Download  
     
    Export citation  
     
    Bookmark   17 citations