Switch to: References

Citations of:

Amoeba reals

Journal of Symbolic Logic 60 (4):1168-1185 (1995)

Add citations

You must login to add citations.
  1. Random World and Quantum Mechanics.Jerzy Król, Krzysztof Bielas & Torsten Asselmeyer-Maluga - 2023 - Foundations of Science 28 (2):575-625.
    Quantum mechanics (QM) predicts probabilities on the fundamental level which are, via Born probability law, connected to the formal randomness of infinite sequences of QM outcomes. Recently it has been shown that QM is algorithmic 1-random in the sense of Martin–Löf. We extend this result and demonstrate that QM is algorithmic $$\omega$$ -random and generic, precisely as described by the ’miniaturisation’ of the Solovay forcing to arithmetic. This is extended further to the result that QM becomes Zermelo–Fraenkel Solovay random on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Mechanics, Formalization and the Cosmological Constant Problem.Jerzy Król & Torsten Asselmeyer-Maluga - 2020 - Foundations of Science 25 (4):879-904.
    Based on formal arguments from Zermelo–Fraenkel set theory we develop the environment for explaining and resolving certain fundamental problems in physics. By these formal tools we show that any quantum system defined by an infinite dimensional Hilbert space of states interferes with the spacetime structure M. M and the quantum system both gain additional degrees of freedom, given by models of Zermelo–Fraenkel set theory. In particular, M develops the ground state where classical gravity vanishes. Quantum mechanics distinguishes set-theoretic random forcing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cardinal invariants of the continuum and combinatorics on uncountable cardinals.Jörg Brendle - 2006 - Annals of Pure and Applied Logic 144 (1-3):43-72.
    We explore the connection between combinatorial principles on uncountable cardinals, like stick and club, on the one hand, and the combinatorics of sets of reals and, in particular, cardinal invariants of the continuum, on the other hand. For example, we prove that additivity of measure implies that Martin’s axiom holds for any Cohen algebra. We construct a model in which club holds, yet the covering number of the null ideal is large. We show that for uncountable cardinals κ≤λ and , (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations