Switch to: References

Add citations

You must login to add citations.
  1. Creature forcing and five cardinal characteristics in Cichoń’s diagram.Arthur Fischer, Martin Goldstern, Jakob Kellner & Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (7-8):1045-1103.
    We use a creature construction to show that consistently $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$The same method shows the consistency of $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Sacks forcing, Laver forcing, and Martin's axiom.Haim Judah, Arnold W. Miller & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (3):145-161.
    In this paper we study the question assuming MA+⌝CH does Sacks forcing or Laver forcing collapse cardinals? We show that this question is equivalent to the question of what is the additivity of Marczewski's ideals 0. We give a proof that it is consistent that Sacks forcing collapses cardinals. On the other hand we show that Laver forcing does not collapse cardinals.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Matrix iterations and Cichon’s diagram.Diego Alejandro Mejía - 2013 - Archive for Mathematical Logic 52 (3-4):261-278.
    Using matrix iterations of ccc posets, we prove the consistency with ZFC of some cases where the cardinals on the right hand side of Cichon’s diagram take two or three arbitrary values (two regular values, the third one with uncountable cofinality). Also, mixing this with the techniques in J Symb Log 56(3):795–810, 1991, we can prove that it is consistent with ZFC to assign, at the same time, several arbitrary regular values on the left hand side of Cichon’s diagram.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On cardinal characteristics of Yorioka ideals.Miguel A. Cardona & Diego A. Mejía - 2019 - Mathematical Logic Quarterly 65 (2):170-199.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Combinatorial properties of Hechler forcing.Jörg Brendle, Haim Judah & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (3):185-199.
    Brendle, J., H. Judah and S. Shelah, Combinatorial properties of Hechler forcing, Annals of Pure and Applied Logic 59 185–199. Using a notion of rank for Hechler forcing we show: assuming ωV1 = ωL1, there is no real in V[d] which is eventually different from the reals in L[ d], where d is Hechler over V; adding one Hechler real makes the invariants on the left-hand side of Cichoń's diagram equal ω1 and those on the right-hand side equal 2ω and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Towers, mad families, and unboundedness.Vera Fischer, Marlene Koelbing & Wolfgang Wohofsky - 2023 - Archive for Mathematical Logic 62 (5):811-830.
    We show that Hechler’s forcings for adding a tower and for adding a mad family can be represented as finite support iterations of Mathias forcings with respect to filters and that these filters are $${\mathcal {B}}$$ B -Canjar for any countably directed unbounded family $${\mathcal {B}}$$ B of the ground model. In particular, they preserve the unboundedness of any unbounded scale of the ground model. Moreover, we show that $${\mathfrak {b}}=\omega _1$$ b = ω 1 in every extension by the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cardinal characteristics, projective wellorders and large continuum.Vera Fischer, Sy David Friedman & Lyubomyr Zdomskyy - 2013 - Annals of Pure and Applied Logic 164 (7-8):763-770.
    We extend the work of Fischer et al. [6] by presenting a method for controlling cardinal characteristics in the presence of a projective wellorder and 2ℵ0>ℵ2. This also answers a question of Harrington [9] by showing that the existence of a Δ31 wellorder of the reals is consistent with Martinʼs axiom and 2ℵ0=ℵ3.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Template iterations with non-definable ccc forcing notions.Diego A. Mejía - 2015 - Annals of Pure and Applied Logic 166 (11):1071-1109.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Closed measure zero sets.Tomek Bartoszynski & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (2):93-110.
    Bartoszynski, T. and S. Shelah, Closed measure zero sets, Annals of Pure and Applied Logic 58 93–110. We study the relationship between the σ-ideal generated by closed measure zero sets and the ideals of null and meager sets. We show that the additivity of the ideal of closed measure zero sets is not bigger than covering for category. As a consequence we get that the additivity of the ideal of closed measure zero sets is equal to the additivity of the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A non-implication between fragments of Martin’s Axiom related to a property which comes from Aronszajn trees.Teruyuki Yorioka - 2010 - Annals of Pure and Applied Logic 161 (4):469-487.
    We introduce a property of forcing notions, called the anti-, which comes from Aronszajn trees. This property canonically defines a new chain condition stronger than the countable chain condition, which is called the property . In this paper, we investigate the property . For example, we show that a forcing notion with the property does not add random reals. We prove that it is consistent that every forcing notion with the property has precaliber 1 and for forcing notions with the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The covering number of the strong measure zero ideal can be above almost everything else.Miguel A. Cardona, Diego A. Mejía & Ismael E. Rivera-Madrid - 2022 - Archive for Mathematical Logic 61 (5):599-610.
    We show that certain type of tree forcings, including Sacks forcing, increases the covering of the strong measure zero ideal \. As a consequence, in Sacks model, such covering number is equal to the size of the continuum, which indicates that this covering number is consistently larger than any other classical cardinal invariant of the continuum. Even more, Sacks forcing can be used to force that \<\mathrm {cov}<\mathrm {cof}\), which is the first consistency result where more than two cardinal invariants (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Filter-linkedness and its effect on preservation of cardinal characteristics.Jörg Brendle, Miguel A. Cardona & Diego A. Mejía - 2021 - Annals of Pure and Applied Logic 172 (1):102856.
    We introduce the property “F-linked” of subsets of posets for a given free filter F on the natural numbers, and define the properties “μ-F-linked” and “θ-F-Knaster” for posets in a natural way. We show that θ-F-Knaster posets preserve strong types of unbounded families and of maximal almost disjoint families. Concerning iterations of such posets, we develop a general technique to construct θ-Fr-Knaster posets (where Fr is the Frechet ideal) via matrix iterations of <θ-ultrafilter-linked posets (restricted to some level of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Cichoń diagram for degrees of relative constructibility.Corey Bacal Switzer - 2020 - Mathematical Logic Quarterly 66 (2):217-234.
    Following a line of research initiated in [4], we describe a general framework for turning reduction concepts of relative computability into diagrams forming an analogy with the Cichoń diagram for cardinal characteristics of the continuum. We show that working from relatively modest assumptions about a notion of reduction, one can construct a robust version of such a diagram. As an application, we define and investigate the Cichoń diagram for degrees of constructibility relative to a fixed inner model W. Many analogies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Combinatorial properties of classical forcing notions.Jörg Brendle - 1995 - Annals of Pure and Applied Logic 73 (2):143-170.
    We investigate the effect of adding a single real on cardinal invariants associated with the continuum. We show:1. adding an eventually different or a localization real adjoins a Luzin set of size continuum and a mad family of size ω1;2. Laver and Mathias forcing collapse the dominating number to ω1, and thus two Laver or Mathias reals added iteratively always force CH;3. Miller's rational perfect set forcing preserves the axiom MA.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Preserving Non-null with Suslin+ Forcings.Jakob Kellner - 2006 - Archive for Mathematical Logic 45 (6):649-664.
    We introduce the notion of effective Axiom A and use it to show that some popular tree forcings are Suslin+. We introduce transitive nep and present a simplified version of Shelah’s “preserving a little implies preserving much”: If I is a Suslin ccc ideal (e.g. Lebesgue-null or meager) and P is a transitive nep forcing (e.g. P is Suslin+) and P does not make any I-positive Borel set small, then P does not make any I-positive set small.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Laver and set theory.Akihiro Kanamori - 2016 - Archive for Mathematical Logic 55 (1-2):133-164.
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Controlling cardinal characteristics without adding reals.Martin Goldstern, Jakob Kellner, Diego A. Mejía & Saharon Shelah - 2021 - Journal of Mathematical Logic 21 (3):2150018.
    We investigate the behavior of cardinal characteristics of the reals under extensions that do not add new [Formula: see text]-sequences (for some regular [Formula: see text]). As an application, we show that consistently the following cardinal characteristics can be different: The (“independent”) characteristics in Cichoń’s diagram, plus [Formula: see text]. (So we get thirteen different values, including [Formula: see text] and continuum). We also give constructions to alternatively separate other MA-numbers (instead of [Formula: see text]), namely: MA for [Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Controlling cardinal characteristics without adding reals.Martin Goldstern, Jakob Kellner, Diego A. Mejía & Saharon Shelah - 2020 - Journal of Mathematical Logic 21 (3).
    We investigate the behavior of cardinal characteristics of the reals under extensions that do not add new <κ-sequences. As an application, we show that consistently the followi...
    Download  
     
    Export citation  
     
    Bookmark  
  • Density zero slaloms.Janusz Pawlikowski - 2000 - Annals of Pure and Applied Logic 103 (1-3):39-53.
    We construct a G δ set G ⊆ ω ω ×2 ω with null vertical sections such that each perfect set P ⊆2 ω meets almost all vertical sections of G in the following sense: we can define from P subsets S of ω of density zero such that whenever the section determined by x ∈ ω ω does not meet P , then x ∈ S for all but finitely many i . This generalizes theorems of Mokobodzki and Brendle (...)
    Download  
     
    Export citation  
     
    Bookmark