Switch to: References

Add citations

You must login to add citations.
  1. The indiscernible topology: A mock zariski topology.Markus Junker & Daniel Lascar - 2001 - Journal of Mathematical Logic 1 (01):99-124.
    We associate with every first order structure [Formula: see text] a family of invariant, locally Noetherian topologies. The structure is almost determined by the topologies, and properties of the structure are reflected by topological properties. We study these topologies in particular for stable structures. In nice cases, we get a behaviour similar to the Zariski topology in algebraically closed fields.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Schlanke Körper (Slim fields).Markus Junker & Jochen Koenigsmann - 2010 - Journal of Symbolic Logic 75 (2):481-500.
    We examine fields in which model theoretic algebraic closure coincides with relative field theoretic algebraic closure. These are perfect fields with nice model theoretic behaviour. For example, they are exactly the fields in which algebraic independence is an abstract independence relation in the sense of Kim and Pillay. Classes of examples are perfect PAC fields, model complete large fields and henselian valued fields of characteristic 0.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Semi-Equational Theories.Artem Chernikov & Alex Mennen - forthcoming - Journal of Symbolic Logic:1-32.
    We introduce and study (weakly) semi-equational theories, generalizing equationality in stable theories (in the sense of Srour) to the NIP context. In particular, we establish a connection to distality via one-sided strong honest definitions; demonstrate that certain trees are semi-equational, while algebraically closed valued fields are not weakly semi-equational; and obtain a general criterion for weak semi-equationality of an expansion of a distal structure by a new predicate.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Comparing axiomatizations of free pseudospaces.Olaf Beyersdorff - 2009 - Archive for Mathematical Logic 48 (7):625-641.
    Independently and pursuing different aims, Hrushovski and Srour (On stable non-equational theories. Unpublished manuscript, 1989) and Baudisch and Pillay (J Symb Log 65(1):443–460, 2000) have introduced two free pseudospaces that generalize the well know concept of Lachlan’s free pseudoplane. In this paper we investigate the relationship between these free pseudospaces, proving in particular, that the pseudospace of Baudisch and Pillay is a reduct of the pseudospace of Hrushovski and Srour.
    Download  
     
    Export citation  
     
    Bookmark