Switch to: References

Add citations

You must login to add citations.
  1. Symmetric and conflated intuitionistic logics.Norihiro Kamide - forthcoming - Logic Journal of the IGPL.
    Two new propositional non-classical logics, referred to as symmetric intuitionistic logic (SIL) and conflated intuitionistic logic (CIL), are introduced as indexed and non-indexed Gentzen-style sequent calculi. SIL is regarded as a natural hybrid logic combining intuitionistic and dual-intuitionistic logics, whereas CIL is regarded as a variant of intuitionistic paraconsistent logic with conflation and without paraconsistent negation. The cut-elimination theorems for SIL and CIL are proved. CIL is shown to be conservative over SIL.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gentzen-Type Methods for Bilattice Negation.Norihiro Kamide - 2005 - Studia Logica 80 (2-3):265-289.
    A general Gentzen-style framework for handling both bilattice (or strong) negation and usual negation is introduced based on the characterization of negation by a modal-like operator. This framework is regarded as an extension, generalization or re- finement of not only bilattice logics and logics with strong negation, but also traditional logics including classical logic LK, classical modal logic S4 and classical linear logic CL. Cut-elimination theorems are proved for a variety of proposed sequent calculi including CLS (a conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Non-Classical Negation in the Works of Helena Rasiowa and Their Impact on the Theory of Negation.Dimiter Vakarelov - 2006 - Studia Logica 84 (1):105-127.
    The paper is devoted to the contributions of Helena Rasiowa to the theory of non-classical negation. The main results of Rasiowa in this area concerns–constructive logic with strong (Nelson) negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Proof Systems Combining Classical and Paraconsistent Negations.Norihiro Kamide - 2009 - Studia Logica 91 (2):217-238.
    New propositional and first-order paraconsistent logics (called L ω and FL ω , respectively) are introduced as Gentzen-type sequent calculi with classical and paraconsistent negations. The embedding theorems of L ω and FL ω into propositional (first-order, respectively) classical logic are shown, and the completeness theorems with respect to simple semantics for L ω and FL ω are proved. The cut-elimination theorems for L ω and FL ω are shown using both syntactical ways via the embedding theorems and semantical ways (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations