Switch to: References

Add citations

You must login to add citations.
  1. Weak distributivity implying distributivity.Dan Hathaway - 2016 - Journal of Symbolic Logic 81 (2):711-717.
    Download  
     
    Export citation  
     
    Bookmark  
  • A game on Boolean algebras describing the collapse of the continuum.Miloš S. Kurilić & Boris Šobot - 2009 - Annals of Pure and Applied Logic 160 (1):117-126.
    The game is played on a complete Boolean algebra in ω-many moves. At the beginning White chooses a non-zero element p of and, in the nth move, White chooses a positive pn

    (...)

    Download  
     
    Export citation  
     
    Bookmark  
  • κ-Stationary Subsets of Pκ+Λ, Infinitary Games, and Distributive Laws in Boolean Algebras.Natasha Dobrinen - 2008 - Journal of Symbolic Logic 73 (1):238 - 260.
    We characterize the (κ, Λ, < μ)-distributive law in Boolean algebras in terms of cut and choose games $\scr{G}_{<\mu}^{\kappa}(\lambda)$ , when μ ≤ κ ≤ Λ and κ<κ = κ. This builds on previous work to yield game-theoretic characterizations of distributive laws for almost all triples of cardinals κ, Λ, μ with μ ≤ Λ, under GCH. In the case when μ ≤ κ ≤ Λ and κ<κ = κ, we show that it is necessary to consider whether the κ-stationarity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The hyper-weak distributive law and a related game in Boolean algebras.James Cummings & Natasha Dobrinen - 2007 - Annals of Pure and Applied Logic 149 (1-3):14-24.
    We discuss the relationship between various weak distributive laws and games in Boolean algebras. In the first part we give some game characterizations for certain forms of Prikry’s “hyper-weak distributive laws”, and in the second part we construct Suslin algebras in which neither player wins a certain hyper-weak distributivity game. We conclude that in the constructible universe L, all the distributivity games considered in this paper may be undetermined.
    Download  
     
    Export citation  
     
    Bookmark