Switch to: References

Add citations

You must login to add citations.
  1. La interpretación modal de la mecánica cuántica: de la lógica cuántica al problema de la medida.Jose Alejandro Fernández Cuesta - 2023 - Revista de la Sociedad de Lógica, Metodología y Filosofía de la Ciencia En España:14-36.
    El presente trabajo pretende explicitar que los operadores modales, como construcciones lógicas, insertos en las interpretaciones modales (MI) de la mecánica cuántica son usados de manera informal sin una semántica modal adecuada. Primero se estudiarán en detalle los motivos por los que ninguna lógica cuántica puede ofrecer una base apropiada para formalizar estos operadores en contextos mecánico-cuánticos. A continuación, se presentará el enfoque de las historias cuánticas como una nueva lógica cuántica (NQL) intrínsecamente booleana como posible herramienta para formalizar operadores (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and Wang (1955) in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The early development of set theory.José Ferreirós - unknown - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations