Switch to: References

Add citations

You must login to add citations.
  1. Isomorphism types of maximal cofinitary groups.Bart Kastermans - 2009 - Bulletin of Symbolic Logic 15 (3):300-319.
    A cofinitary group is a subgroup of Sym(ℕ) where all nonidentity elements have finitely many fixed points. A maximal cofinitary group is a cofinitary group, maximal with respect to inclusion. We show that a maximal cofinitary group cannot have infinitely many orbits. We also show, using Martin's Axiom, that no further restrictions on the number of orbits can be obtained. We show that Martin's Axiom implies there exist locally finite maximal cofinitary groups. Finally we show that there exists a uniformly (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Co-analytic mad families and definable wellorders.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2013 - Archive for Mathematical Logic 52 (7-8):809-822.
    We show that the existence of a ${\Pi^1_1}$ -definable mad family is consistent with the existence of a ${\Delta^{1}_{3}}$ -definable well-order of the reals and ${\mathfrak{b}=\mathfrak{c}=\aleph_3}$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Projective mad families.Sy-David Friedman & Lyubomyr Zdomskyy - 2010 - Annals of Pure and Applied Logic 161 (12):1581-1587.
    Using almost disjoint coding we prove the consistency of the existence of a definable ω-mad family of infinite subsets of ω together with.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A co-analytic maximal set of orthogonal measures.Vera Fischer & Asger Törnquist - 2010 - Journal of Symbolic Logic 75 (4):1403-1414.
    We prove that if V = L then there is a $\Pi _{1}^{1}$ maximal orthogonal (i.e., mutually singular) set of measures on Cantor space. This provides a natural counterpoint to the well-known theorem of Preiss and Rataj [16] that no analytic set of measures can be maximal orthogonal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Borel maximal eventually different family.Haim Horowitz & Saharon Shelah - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation