Switch to: References

Add citations

You must login to add citations.
  1. Keisler’s order via Boolean ultrapowers.Francesco Parente - 2020 - Archive for Mathematical Logic 60 (3):425-439.
    In this paper, we provide a new characterization of Keisler’s order in terms of saturation of Boolean ultrapowers. To do so, we apply and expand the framework of ‘separation of variables’ recently developed by Malliaris and Shelah. We also show that good ultrafilters on Boolean algebras are precisely the ones which capture the maximum class in Keisler’s order, answering a question posed by Benda in 1974.
    Download  
     
    Export citation  
     
    Bookmark  
  • On reduced products and filters.Mroslav Benda - 1972 - Annals of Mathematical Logic 4 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ramsey for R1 ultrafilter mappings and their Dedekind cuts.Timothy Trujillo - 2015 - Mathematical Logic Quarterly 61 (4-5):263-273.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Saturation of ultrapowers and Keisler's order.Saharon Shelah - 1972 - Annals of Mathematical Logic 4 (1):75.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The theory of Boolean ultrapowers.Richard Mansfield - 1971 - Annals of Mathematical Logic 2 (3):297-323.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Saturation and simple extensions of models of peano arithmetic.Matt Kaufmann & James H. Schmerl - 1984 - Annals of Pure and Applied Logic 27 (2):109-136.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Game sentences and ultrapowers.Renling Jin & H. Jerome Keisler - 1993 - Annals of Pure and Applied Logic 60 (3):261-274.
    We prove that if is a model of size at most [kappa], λ[kappa] = λ, and a game sentence of length 2λ is true in a 2λ-saturated model ≡ , then player has a winning strategy for a related game in some ultrapower ΠD of . The moves in the new game are taken in the cartesian power λA, and the ultrafilter D over λ must be chosen after the game is played. By taking advantage of the expressive power of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations