Switch to: References

Add citations

You must login to add citations.
  1. Many different covering numbers of Yorioka’s ideals.Noboru Osuga & Shizuo Kamo - 2014 - Archive for Mathematical Logic 53 (1-2):43-56.
    For ${b \in {^{\omega}}{\omega}}$ , let ${\mathfrak{c}^{\exists}_{b, 1}}$ be the minimal number of functions (or slaloms with width 1) to catch every functions below b in infinitely many positions. In this paper, by using the technique of forcing, we construct a generic model in which there are many coefficients ${\mathfrak{c}^{\exists}_{{b_\alpha}, 1}}$ with pairwise different values. In particular, under the assumption that a weakly inaccessible cardinal exists, we can construct a generic model in which there are continuum many coefficients ${\mathfrak{c}^{\exists}_{{b_\alpha}, 1}}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Specializing Aronszajn Trees with Strong Axiom A and Halving.Heike Mildenberger & Saharon Shelah - 2019 - Notre Dame Journal of Formal Logic 60 (4):587-616.
    We construct creature forcings with strong Axiom A that specialize a given Aronszajn tree. We work with tree creature forcing. The creatures that live on the Aronszajn tree are normed and have the halving property. We show that our models fulfill ℵ1=d
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Specialising Aronszajn trees by countable approximations.Heike Mildenberger & Saharon Shelah - 2003 - Archive for Mathematical Logic 42 (7):627-647.
    We show that there are proper forcings based upon countable trees of creatures that specialise a given Aronszajn tree.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Creature forcing and five cardinal characteristics in Cichoń’s diagram.Arthur Fischer, Martin Goldstern, Jakob Kellner & Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (7-8):1045-1103.
    We use a creature construction to show that consistently $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$The same method shows the consistency of $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On cardinal characteristics of Yorioka ideals.Miguel A. Cardona & Diego A. Mejía - 2019 - Mathematical Logic Quarterly 65 (2):170-199.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Continuum many different things: Localisation, anti-localisation and Yorioka ideals.Miguel A. Cardona, Lukas Daniel Klausner & Diego A. Mejía - 2024 - Annals of Pure and Applied Logic 175 (7):103453.
    Download  
     
    Export citation  
     
    Bookmark