Switch to: References

Add citations

You must login to add citations.
  1. Metric spaces and the axiom of choice.Omar De la Cruz, Eric Hall, Paul Howard, Kyriakos Keremedis & Jean E. Rubin - 2003 - Mathematical Logic Quarterly 49 (5):455-466.
    We study conditions for a topological space to be metrizable, properties of metrizable spaces, and the role the axiom of choice plays in these matters.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)On Sequentially Compact Subspaces of without the Axiom of Choice.Kyriakos Keremedis & Eleftherios Tachtsis - 2003 - Notre Dame Journal of Formal Logic 44 (3):175-184.
    We show that the property of sequential compactness for subspaces of.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two new equivalents of Lindelöf metric spaces.Kyriakos Keremedis - 2018 - Mathematical Logic Quarterly 64 (1-2):37-43.
    In the realm of Lindelöf metric spaces the following results are obtained in : (i) If is a Lindelöf metric space then it is both densely Lindelöf and almost Lindelöf. In addition, under the countable axiom of choice, the three notions coincide. (ii) The statement “every separable metric space is almost Lindelöf” implies that every infinite subset of has a countably infinite subset). (iii) The statement “every almost Lindelöf metric space is quasi totally bounded implies. (iv) The proposition “every quasi (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consequences of the failure of the axiom of choice in the theory of Lindelof metric spaces.Kyriakos Keremedis - 2004 - Mathematical Logic Quarterly 50 (2):141.
    We study within the framework of Zermelo-Fraenkel set theory ZF the role that the axiom of choice plays in the theory of Lindelöf metric spaces. We show that in ZF the weak choice principles: Every Lindelöf metric space is separable and Every Lindelöf metric space is second countable are equivalent. We also prove that a Lindelöf metric space is hereditarily separable iff it is hereditarily Lindelöf iff it hold as well the axiom of choice restricted to countable sets and to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation