Switch to: References

Citations of:

A Strengthening of the Caesar Problem

Erkenntnis 75 (1):123-136 (2011)

Add citations

You must login to add citations.
  1. What Are Quantities?Joongol Kim - 2016 - Australasian Journal of Philosophy 94 (4):792-807.
    ABSTRACTThis paper presents a view of quantities as ‘adverbial’ entities of a certain kind—more specifically, determinate ways, or modes, of having length, mass, speed, and the like. In doing so, it will be argued that quantities as such should be distinguished from quantitative properties or relations, and are not universals but are particulars, although they are not objects, either. A main advantage of the adverbial view over its rivals will be found in its superior explanatory power with respect to both (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The sortal resemblance problem.Joongol Kim - 2014 - Canadian Journal of Philosophy 44 (3-4):407-424.
    Is it possible to characterize the sortal essence of Fs for a sortal concept F solely in terms of a criterion of identity C for F? That is, can the question ‘What sort of thing are Fs?’ be answered by saying that Fs are essentially those things whose identity can be assessed in terms of C? This paper presents a case study supporting a negative answer to these questions by critically examining the neo-Fregean suggestion that cardinal numbers can be fully (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Logical Foundation of Arithmetic.Joongol Kim - 2015 - Studia Logica 103 (1):113-144.
    The aim of this paper is to shed new light on the logical roots of arithmetic by presenting a logical framework that takes seriously ordinary locutions like ‘at least n Fs’, ‘n more Fs than Gs’ and ‘n times as many Fs as Gs’, instead of paraphrasing them away in terms of expressions of the form ‘the number of Fs’. It will be shown that the basic concepts of arithmetic can be intuitively defined in the language of ALA, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • How Do We Semantically Individuate Natural Numbers?†.Stefan Buijsman - forthcoming - Philosophia Mathematica.
    ABSTRACT How do non-experts single out numbers for reference? Linnebo has argued that they do so using a criterion of identity based on the ordinal properties of numerals. Neo-logicists, on the other hand, claim that cardinal properties are the basis of individuation, when they invoke Hume’s Principle. I discuss empirical data from cognitive science and linguistics to answer how non-experts individuate numbers better in practice. I use those findings to develop an alternative account that mixes ordinal and cardinal properties to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Problem of Fregean Equivalents.Joongol Kim - 2019 - Dialectica 73 (3):367-394.
    It would seem that some statements like ‘There are exactly four moons of Jupiter’ and ‘The number of moons of Jupiter is four’ have the same truth-conditions and yet differ in ontological commitment. One strategy to resolve this paradoxical phenomenon is to insist that the statements have not only the same truth-conditions but also the same ontological commitments; the other strategy is to reject the presumption that they have the same truth-conditions. This paper critically examines some popular versions of these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Plural Identity.Joongol Kim - 2019 - Philosophy and Phenomenological Research 102 (1):87-105.
    Plural identity—the relation of identity between some things xx and some things yy—has been standardly defined in terms of the plural relation one of (or among). This paper challenges that standard view. To that end, it will be argued, first, that the identity relation, singular or plural, can only be defined in a higher-order language, second, that the standard definition of plural identity in terms of the one of (or among) relation should be regarded instead as providing a criterion of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The adverbial theory of numbers: some clarifications.Joongol Kim - 2020 - Synthese 197 (9):3981-4000.
    In a forthcoming paper in this journal, entitled “Bad company objection to Joongol Kim’s adverbial theory of numbers”, Namjoong Kim presents an ingenious Russell-style paradox based on an analogue of Kim’s definition of the number 1, and argues that Kim’s theory needs to provide a criterion of demarcation between acceptable and unacceptable definitions of adverbial entities. This paper addresses this ‘bad company’ objection and some other related issues concerning Kim’s adverbial theory by clarifying the purposes and uses of the formal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of Mathematics for the Masses : Extending the scope of the philosophy of mathematics.Stefan Buijsman - 2016 - Dissertation, Stockholm University
    One of the important discussions in the philosophy of mathematics, is that centered on Benacerraf’s Dilemma. Benacerraf’s dilemma challenges theorists to provide an epistemology and semantics for mathematics, based on their favourite ontology. This challenge is the point on which all philosophies of mathematics are judged, and clarifying how we might acquire mathematical knowledge is one of the main occupations of philosophers of mathematics. In this thesis I argue that this discussion has overlooked an important part of mathematics, namely mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Acquiring mathematical concepts: The viability of hypothesis testing.Stefan Buijsman - 2021 - Mind and Language 36 (1):48-61.
    Can concepts be acquired by testing hypotheses about these concepts? Fodor famously argued that this is not possible. Testing the correct hypothesis would require already possessing the concept. I argue that this does not generally hold for mathematical concepts. I discuss specific, empirically motivated, hypotheses for number concepts that can be tested without needing to possess the relevant number concepts. I also argue that one can test hypotheses about the identity conditions of other mathematical concepts, and then fix the application (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hume’s principle: a plea for austerity.Kai Michael Büttner - 2019 - Synthese 198 (4):3759-3781.
    According to Hume’s principle, a sentence of the form ⌜The number of Fs = the number of Gs⌝ is true if and only if the Fs are bijectively correlatable to the Gs. Neo-Fregeans maintain that this principle provides an implicit definition of the notion of cardinal number that vindicates a platonist construal of such numerical equations. Based on a clarification of the explanatory status of Hume’s principle, I will provide an argument in favour of a nominalist construal of numerical equations. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation