Switch to: References

Add citations

You must login to add citations.
  1. Infinitary stability theory.Sebastien Vasey - 2016 - Archive for Mathematical Logic 55 (3-4):567-592.
    We introduce a new device in the study of abstract elementary classes : Galois Morleyization, which consists in expanding the models of the class with a relation for every Galois type of length less than a fixed cardinal κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}. We show:Theorem 0.1 An AEC K is fully \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa = \beth _{\kappa } > \text {LS}$$\end{document}. If K is Galois stable, then the (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Formalization, primitive concepts, and purity: Formalization, primitive concepts, and purity.John T. Baldwin - 2013 - Review of Symbolic Logic 6 (1):87-128.
    We emphasize the role of the choice of vocabulary in formalization of a mathematical area and remark that this is a particular preoccupation of logicians. We use this framework to discuss Kennedy’s notion of ‘formalism freeness’ in the context of various schools in model theory. Then we clarify some of the mathematical issues in recent discussions of purity in the proof of the Desargues proposition. We note that the conclusion of ‘spatial content’ from the Desargues proposition involves arguments which are (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Quasiminimal structures, groups and Zariski-like geometries.Tapani Hyttinen & Kaisa Kangas - 2016 - Annals of Pure and Applied Logic 167 (6):457-505.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Model theory of special subvarieties and Schanuel-type conjectures.Boris Zilber - 2016 - Annals of Pure and Applied Logic 167 (10):1000-1028.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Finding a field in a Zariski-like structure.Kaisa Kangas - 2017 - Annals of Pure and Applied Logic 168 (10):1837-1865.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Shelah's eventual categoricity conjecture in universal classes: Part I.Sebastien Vasey - 2017 - Annals of Pure and Applied Logic 168 (9):1609-1642.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Henkin constructions of models with size continuum.John T. Baldwin & Michael C. Laskowski - 2019 - Bulletin of Symbolic Logic 25 (1):1-33.
    We describe techniques for constructing models of size continuum inωsteps by simultaneously building a perfect set of enmeshed countable Henkin sets. Such models have perfect, asymptotically similar subsets. We survey applications involving Borel models, atomic models, two-cardinal transfers and models respecting various closure relations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exponentially closed fields and the conjecture on intersections with tori.Jonathan Kirby & Boris Zilber - 2014 - Annals of Pure and Applied Logic 165 (11):1680-1706.
    We give an axiomatization of the class ECF of exponentially closed fields, which includes the pseudo-exponential fields previously introduced by the second author, and show that it is superstable over its interpretation of arithmetic. Furthermore, ECF is exactly the elementary class of the pseudo-exponential fields if and only if the Diophantine conjecture CIT on atypical intersections of tori with subvarieties is true.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quasiminimal abstract elementary classes.Sebastien Vasey - 2018 - Archive for Mathematical Logic 57 (3-4):299-315.
    We propose the notion of a quasiminimal abstract elementary class. This is an AEC satisfying four semantic conditions: countable Löwenheim–Skolem–Tarski number, existence of a prime model, closure under intersections, and uniqueness of the generic orbital type over every countable model. We exhibit a correspondence between Zilber’s quasiminimal pregeometry classes and quasiminimal AECs: any quasiminimal pregeometry class induces a quasiminimal AEC, and for any quasiminimal AEC there is a natural functorial expansion that induces a quasiminimal pregeometry class. We show in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations