Switch to: References

Add citations

You must login to add citations.
  1. An introduction to the Scott complexity of countable structures and a survey of recent results.Matthew Harrison-Trainor - 2022 - Bulletin of Symbolic Logic 28 (1):71-103.
    Every countable structure has a sentence of the infinitary logic $\mathcal {L}_{\omega _1 \omega }$ which characterizes that structure up to isomorphism among countable structures. Such a sentence is called a Scott sentence, and can be thought of as a description of the structure. The least complexity of a Scott sentence for a structure can be thought of as a measurement of the complexity of describing the structure. We begin with an introduction to the area, with short and simple proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong reducibilities and set theory.Noah Schweber - 2025 - Annals of Pure and Applied Logic 176 (2):103522.
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing a countable structure to belong to the ground model.Itay Kaplan & Saharon Shelah - 2016 - Mathematical Logic Quarterly 62 (6):530-546.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Expanding the Reals by Continuous Functions Adds No Computational Power.Uri Andrews, Julia F. Knight, Rutger Kuyper, Joseph S. Miller & Mariya I. Soskova - 2023 - Journal of Symbolic Logic 88 (3):1083-1102.
    We study the relative computational power of structures related to the ordered field of reals, specifically using the notion of generic Muchnik reducibility. We show that any expansion of the reals by a continuous function has no more computing power than the reals, answering a question of Igusa, Knight, and Schweber [7]. On the other hand, we show that there is a certain Borel expansion of the reals that is strictly more powerful than the reals and such that any Borel (...)
    Download  
     
    Export citation  
     
    Bookmark