Switch to: References

Add citations

You must login to add citations.
  1. Unifying the model theory of first-order and second-order arithmetic via WKL 0 ⁎.Ali Enayat & Tin Lok Wong - 2017 - Annals of Pure and Applied Logic 168 (6):1247-1283.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Primitive recursive reverse mathematics.Nikolay Bazhenov, Marta Fiori-Carones, Lu Liu & Alexander Melnikov - 2024 - Annals of Pure and Applied Logic 175 (1):103354.
    Download  
     
    Export citation  
     
    Bookmark  
  • Weaker cousins of Ramsey's theorem over a weak base theory.Marta Fiori-Carones, Leszek Aleksander Kołodziejczyk & Katarzyna W. Kowalik - 2021 - Annals of Pure and Applied Logic 172 (10):103028.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How Strong is Ramsey’s Theorem If Infinity Can Be Weak?Leszek Aleksander Kołodziejczyk, Katarzyna W. Kowalik & Keita Yokoyama - 2023 - Journal of Symbolic Logic 88 (2):620-639.
    We study the first-order consequences of Ramsey’s Theorem fork-colourings ofn-tuples, for fixed$n, k \ge 2$, over the relatively weak second-order arithmetic theory$\mathrm {RCA}^*_0$. Using the Chong–Mourad coding lemma, we show that in a model of$\mathrm {RCA}^*_0$that does not satisfy$\Sigma ^0_1$induction,$\mathrm {RT}^n_k$is equivalent to its relativization to any proper$\Sigma ^0_1$-definable cut, so its truth value remains unchanged in all extensions of the model with the same first-order universe.We give a complete axiomatization of the first-order consequences of$\mathrm {RCA}^*_0 + \mathrm {RT}^n_k$for$n \ge (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reverse mathematics, young diagrams, and the ascending chain condition.Kostas Hatzikiriakou & Stephen G. Simpson - 2017 - Journal of Symbolic Logic 82 (2):576-589.
    LetSbe the group of finitely supported permutations of a countably infinite set. Let$K[S]$be the group algebra ofSover a fieldKof characteristic 0. According to a theorem of Formanek and Lawrence,$K[S]$satisfies the ascending chain condition for two-sided ideals. We study the reverse mathematics of this theorem, proving its equivalence over$RC{A_0}$ to the statement that${\omega ^\omega }$is well ordered. Our equivalence proof proceeds via the statement that the Young diagrams form a well partial ordering.
    Download  
     
    Export citation  
     
    Bookmark   3 citations